Бетонные панели стеновые для малоэтажного строительства: Бетонные стеновые панели для малоэтажного строительства

Содержание

Стеновые ж/б панели | Строительство домов под ключ

Стеновые ж/б панели | Строительство домов под ключ — БЭНПАН

Продолжая пользоваться сайтом, вы соглашаетесь на использование файлов cookie. Более подробную информацию можно найти в Политике cookie файлов.

×

Сравнение панелей

БЭНПАН

Экономный вариант панели, требующий дополнительного утепления. Подходит для любых фасадных материалов, внутренняя отделка – гипсокартон.

Подробнее

БЭНПАН-Д

Двухслойная панель с предустановленным утеплителем. Утеплитель предназначен для устройства «мокрого» фасада.

Подробнее

БЭНПАН+

Панель, не требующая дополнительного утепления. Оптимальна для вентилируемых фасадов. Внутренняя поверхность – гладкий бетон.

Подробнее

БЭНПАН Премиум

Премиальная панель с готовым фасадом на выбор (гладкий, дикий камень, клинкерный кирпич и др. ). Внутренняя поверхность – гладкий бетон.

Подробнее

Преимущества

Скорость строительства

Благодаря высокой заводской готовности всех элементов монтаж здания осуществляется в любое время года. Сборка коробки частного дома по типовому проекту занимает всего 2-4 дня. Строительство дома под ключ занимает всего 3 месяца.

Энергоэффективность

Железобетонные панели БЭНПАН с типовым утеплением обладают коэффициентом сопротивления теплопередаче от 3,2 до 6 R*м2С/Вт (в зависимости от утеплителя), что позволяет строить энергоэффективные дома и приводит к значительному сокращению затрат на энергопотребление.

Долговечность

Новейшие технологии производства материалов и контроль качества обеспечивают надежность и долговечность домов и сооружений, построенных по технологии БЭНПАН. Срок службы дома по сертификату более 50 лет.

Пожаробезопасность

Железобетонные панели БЭНПАН – это негорючие строительные материалы (НГ). Армированные несущие панели из фибробетона соответствуют требованиям нормативных документов пожарной безопасности, предел огнестойкости до REI150.

Экологичность

Железобетонные изделия БЭНПАН имеют сертификат экологической безопасности российской системы сертификации ЭКОСЕРТИФИКА и международный экологический сертификат ISO 14001.

Бесшумность

Встроенная термоизоляция также прекрасно поглощает звук и служит дополнительной звукоизоляцией: в доме БЭНПАН практически не слышен уличный шум, а благодаря шумоизоляции в железобетонных плитах перекрытий на втором этаже можно ходить, танцевать или слушать музыку, не мешая жителям первого этажа.

Сертификаты

Технология БЭНПАН | Строительство домов под ключ

Технология БЭНПАН | Строительство домов под ключ — БЭНПАН

Продолжая пользоваться сайтом, вы соглашаетесь на использование файлов cookie. Более подробную информацию можно найти в Политике cookie файлов.

×

Сравнение панелей

БЭНПАН

Экономный вариант панели, требующий дополнительного утепления. Подходит для любых фасадных материалов, внутренняя отделка – гипсокартон.

Подробнее

БЭНПАН-Д

Двухслойная панель с предустановленным утеплителем. Утеплитель предназначен для устройства «мокрого» фасада.

Подробнее

БЭНПАН+

Панель, не требующая дополнительного утепления. Оптимальна для вентилируемых фасадов. Внутренняя поверхность – гладкий бетон.

Подробнее

БЭНПАН Премиум

Премиальная панель с готовым фасадом на выбор (гладкий, дикий камень, клинкерный кирпич и др.). Внутренняя поверхность – гладкий бетон.

Подробнее

Преимущества

Скорость строительства

Благодаря высокой заводской готовности всех элементов монтаж здания осуществляется в любое время года. Сборка коробки частного дома по типовому проекту занимает всего 2-4 дня. Строительство дома под ключ занимает всего 3 месяца.

Энергоэффективность

Железобетонные панели БЭНПАН с типовым утеплением обладают коэффициентом сопротивления теплопередаче от 3,2 до 6 R*м2С/Вт (в зависимости от утеплителя), что позволяет строить энергоэффективные дома и приводит к значительному сокращению затрат на энергопотребление.

Долговечность

Новейшие технологии производства материалов и контроль качества обеспечивают надежность и долговечность домов и сооружений, построенных по технологии БЭНПАН. Срок службы дома по сертификату более 50 лет.

Пожаробезопасность

Железобетонные панели БЭНПАН – это негорючие строительные материалы (НГ). Армированные несущие панели из фибробетона соответствуют требованиям нормативных документов пожарной безопасности, предел огнестойкости до REI150.

Экологичность

Железобетонные изделия БЭНПАН имеют сертификат экологической безопасности российской системы сертификации ЭКОСЕРТИФИКА и международный экологический сертификат ISO 14001.

Бесшумность

Встроенная термоизоляция также прекрасно поглощает звук и служит дополнительной звукоизоляцией: в доме БЭНПАН практически не слышен уличный шум, а благодаря шумоизоляции в железобетонных плитах перекрытий на втором этаже можно ходить, танцевать или слушать музыку, не мешая жителям первого этажа.

Сертификаты

Энерго-

эффективность

На обогрев зданий в зимний и охлаждение в летний периоды расходуется большое количество тепловой и электрической энергии. Применение комплекса грамотных решений на этапах проектирования и строительства позволяет многократно снизить общее потребление энергии в процессе эксплуатации вашего дома.

Подробнее

Контроль качества

Вся продукция БЭНПАН изготавливается в соответствии со строительными нормами и правилами и проходит строгий контроль качества в испытательной лаборатории, аккредитованной в системе «Стройсертификат».

Подробнее

Вопрос – ответ

В этом разделе собраны ответы на самые частые вопросы о строительстве, о технологии БЭНПАН и об оформлении документов. Если вы не нашли ответ на свой вопрос, напишите нам или оставьте сообщение в онлайн-чате.

Подробнее

Сравнение технологий строительства

Мы провели сравнение различных материалов и технологий строительства по нескольким параметрам. На примере двухэтажного капитального дома с площадью 100 м2. С результатами сравнения можно озакомиться в наглядной презентации

Скачать презентацию

Железобетонные стеновые панели: типы, вес, размеры, ГОСТ

Издавна строительным материалом служили кирпич, камень, дерево. В прошлом веке был разработан новый вид строительства – возведение вертикальных стен из армированных бетонных плит стандартных размеров. Разработаны серии стеновых панелей различного назначения.

СодержаниеСвернуть

Созданы альбомы чертежей для панелей разного вида, с расчетами, учитывающие особенности эксплуатации. ГОСТы на железобетонные стеновые панели предписывают, типоразмеры, виды бетона и стали для закладных и арматуры, место установки.

Типы и серии железобетонных стеновых панелей

Стеновая панель представляет железобетонную плиту, устанавливаемую вертикально. В зависимости от места применения используются пустотелые, монолитные железобетонные формованные изделия, сплошные или с выемками под окна и двери.

Стеновые ЖБИ выпускаются поточным методом. Это значит, объект собирается из разных панелей, относящихся к одной серии. Они унифицированы, относятся к одному альбому чертежей, независимо, строят дом в Москве или Чите. Набор отлитых деталей является конструктором для строителей.

Виды ж/б панелей и ГОСТы

  • Железобетонные наружные стеновые панели для жилых и общественных зданий могут отливаться из легкого пористого и тяжелого бетонов. Однослойные и двухслойные изделия соответствуют ГОСТ 11024-20-12
  • В строительстве жилых и административно-культурных объектов используют панели стеновые трехслойные железобетонные, монолитные или сборные, отвечающие требованиям ГОСТ 31310-2015.
  • Для контура цокольного этажа и подполья используют однослойные и двухслойные вертикальные конструкции соответствующие ГОСТ 11024-84 и ГОСТ 11118-73.
  • Внутренние стеновые панели из железобетона по характеристикам отвечают ГОСТ 12504-80.
  • Однослойные железобетонные стеновые панели для ограждения или инженерно- техническим конструкциям выпускаются по ТУ завода изготовителя.

Особые требования к арматурной сетке и закладным элементам. Для каждого вида плит применяется определенный вид стали, диаметр стержней, марка и класс арматурной сетки. Определяющими на этом этапе являются ГОСТ 31310-2005 и ГОСТ 1305-2003.

Значение серии ж/б изделий и альбома чертежей

В рамках ГОСТ разрабатывается серия внутренних или наружных железобетонных стеновых панелей с учетом допусков под условия эксплуатации, применяемого бетона, арматуры, закладных и схемы соединения блоков. То есть альбом регламентирует всю технологию от изготовления до установки стеновой плиты.

Как пример, серия 1.432.1-21 трехслойных железобетонных стеновых панелей рассчитана для плит длиной 6 м, устанавливаемых в отапливаемом помещении. Воздушная среда – влажная и агрессивная. Для этой серии разработано 7 выпусков альбома.

Каждый несет рабочие чертежи для одного сегмента – стеновые панели, монтажные узлы, применяемая арматура и прочее. Характеристики и размеры стеновых железобетонных панелей

В зависимости от нагрузки, которую будет нести стеновая панель подбирается арматура и закладные. Причем армирование выполняется с предварительным напряжением или обычным способом.

Плотность бетона, для отливки:

  • особо легкий, с пористым наполнителем – 700 кг/м3;
  • легкий – массой до 1800 кг/м3;
  • тяжелый – плотность до 1800 кг/м3;
  • особо тяжелый – выше 2 500 кг/м3.

Вес стеновых железобетонных панелей зависит от марки бетона, и количества слоев в сборке. Панели могут использоваться в каркасном строительстве, закрепляться закладными на опору, и тогда сборные железобетонные стеновые панели считают не несущими.

В бескаркасном контуре стеновые панели несущие, загруженные. Они могут быть также самонесущими и поэтажно несущими.

Размеры стеновых панелей

Типовые размеры наружных железобетонных стеновых панелей регламентированы ГОСТом.

  • Для жилых зданий используют плиты длиной 6 м, и 3 м, 1,5 м как доборные в проемах, с оконными гнездами, выемками под двери.
  • Для производственных помещений 6, 12 м длиной.
  • Высота всех плит 1,2 или 1,8 м.

Примечания:

  1. Координационные высоты панелей, указанные в таблице выше, относятся к панелям, предназначенным для надземных этажей, а координационные толщины панелей – к однослойным и сплошным слоистым панелям. В случаях, когда в таблице приведено несколько модулей, координационный размер кратен одному из этих модулей.
  2. Координационную длину угловых панелей определяют в зависимости от толщины панелей и конструкции угловых стыковых соединений.
  3. Координационную длину простеночных панелей допускается принимать отличной от приведенной в таблице в случаях, когда это обосновано особенностями решения фасадов зданий.
  4. Координационную толщину панелей, кратную модулю М/4, равному 25 мм,следует предпочтительно принимать для слоистых панелей.
  5. Допускается при соответствующем технико-экономическом обосновании и с разрешения госстроев союзных республик принимать координационную толщину панелей более 400 мм.
  6. Допускается изготовлять панели координационными размерами, отличными от указанных в табл. 1, на действующем оборудовании до 01.01.91, а также в случаях, предусмотренных СТ СЭВ 1001-78.

Толщина железобетонных стеновых панелей

Толщина железобетонных стеновых панелей зависит от количества слоев и составляет 20-50 см. Внутренние железобетонные стеновые панели представляют крупногабаритные плиты на высоту этажа и нужную длину, до 6 метров.

Примечание. Минимальную толщину слоя, указанную в скобках, допускается принимать по согласованию между проектной организацией – автором проектной документации на конкретные здания и предприятием-изготовителем при наличии технико-экономического обоснования, разработанного на основании экспериментальных данных, полученных для конкретных конструкций панелей с учетом условий их применения в зданиях и климатических воздействии.

Изготавливают их из обычного или гипсового бетона, укрепляют армирующей сеткой и покрываются слоем антикоррозийной замазки. Внутренняя плита обычно бывает однослойная, самонесущая.

На ребре каждой панели есть маркировка, которую нужно уметь читать:

  • Первая цифра 1, 2,3 показывает, сколько слоев в монолитной конструкции, а 4-6 – в сборной.
  • В- внутренняя, Н- наружная панель;
  • С – стены, Ц – цоколь, подвал, Ч – чердак.
  • размеры в дециметрах.

Порядок изготовления трехслойных железобетонных стеновых панелей

Однослойная плита изготавливается из бетона. Двухслойная имеет каркас, и теплозащитный слой, который одновременно выполняет функцию пароизоляции. Сверху конструкция покрывается цементно-песчаной стяжкой. Несущий слой устанавливают со стороны помещения.

Но в современном строительстве наиболее часто используют трехслойные стеновые плиты. Здесь панель с арматурой устанавливается на наружную сторону, укладывается слой теплоизоляции и внутренняя и наружная панель скрепляются арматурой.

Утеплитель в железобетонные стеновые панели выбирается, исходя из климатических условий эксплуатации. Армирование двухстороннее, каркасом и сеткой с защитой ее от ржавления специальной замазкой.

Крепление железобетонных стеновых панелей

Один из ответственных этапов панельного строительства – сборка каркаса здания или сооружения. На каждой панели предусмотрены специальные металлические элементы крепления, называемые закладными.

Какой тип замка выбрать, предписывает Типовая Технологическая Карта (ТТК) и является ссылочным документом в разработке ППР – проекта производства работ.

Однослойные или многослойные железобетонные панели закрепляют на каркасе одним из способов:

  • Методом сварки. Закладной элемент панели соединяется с ригелем балки с помощью стальных накладок.
  • Болтовое соединение – закладная и накладка соединяются винтовым соединением. От коррозии узел защищают бетонированием.
  • Соединение петля-скоба, когда накладка выполнена из арматуры, на нее вставляется петля закладной, место соединения бетонируется.
  • Самофиксирующие связи – когда замок выполняется между панелями. Одна из них имеет разомкнутую петлю, другая – выступающий штырь. При монтаже получается соединение, которое по действиям напоминает навешивание полотна двери на выступающие стержни.

Технические требования к стеновым панелям

Независимо, изготовлены железобетонные панели для промышленных зданий или жилых помещений они должны отвечать требованиям:

  • Точные размеры и формы с точно установленными закладными соединениями.
  • Соответствие веса и размера стандарту.
  • Соблюдение допусков, установленных ГОСТ, с погрешностью не более 10 мм.
  • Все металлические компоненты должны быть установлены заподлицо, для закладных допускается выход на 3 мм над поверхностью.

Заключение

Стеновые панели ускоряют и удешевляют строительство зданий и сооружений. Их используют в малоэтажном и высотном строительстве. Выбирая формованные изделия из железобетона, следует обращать внимание на соответствие плиты требованиям стандартов и ее назначение.

Домокомплекты из полистиролбетонных блоков в Москве

Полистиролбетон D500

Пенобетон D700
(неавтоклавный)

Газобетон D500
(автоклавный)

Прочность на сжатие

В2,0 — B2,5
ГОСТ 33929-2016

В1,5 — B2,5
ГОСТ 25485-89

В1,0 — B2,5
ГОСТ 25485-89

Прочность на растяжение
при изгибе

Не менее 0,7Мпа
ГОСТ 33929-2016

Не нормируется
(не выдерживает испытаний)

Не нормируется
(не выдерживает испытаний)

Морозостойкость
(долговечность)

Класс F200
ГОСТ 33929-2016

Класс от F15 до F50
ГОСТ 25485-89

Класс от F15 до F35
ГОСТ 25485-89

Водопоглощение

До 4%

До 12%

До 30%

Сейсмоустойчивость

От 9 до 12 баллов

Не выдерживает испытаний

Не выдерживает испытаний

Экологичность

Безопасен для здоровья

Безопасен для здоровья

Безопасен для здоровья

Антисептичность

Хорошо

Плохо

Плохо

Теплоизоляция

0,13Вт/(м*°С)
ГОСТ 33929-2016

0,27Вт/(м*°С)
ГОСТ 25485-89

0,17Вт/(м*°С)
ГОСТ 25485-89

Шумоизоляция

Изоляция воздушного
шума 61дБ

Изоляция воздушного шума
55дБ (СП 23-103-2003)

Изоляция воздушного шума
52дБ (СП 23-103-2003)

Паропроницаемость
(микроклимат)

0,075мг/(м*ч*Па)
ГОСТ 33929-2016

0,15мг/(м*ч*Па)
ГОСТ 25485-89

0,20мг/(м*ч*Па)
ГОСТ 25485-89

Трехслойные железобетонные стеновые панели для жилых домов

Панели трехслойные железобетонные (ЖБИ): стеновые для жилых домов, монтаж

Строительство многоэтажных домов из трехслойных железобетонных панелей позволило в несколько раз сократить время на их возведение, оптимизировать расходы на приобретение дорогостоящих строительных материалов и уменьшить количество рабочих на строительной площадке.

Панельные стены в чем особенности

Сегодня для мало- и многоэтажного строительства жилых домов, а также производственных зданий и сооружений используют панели трехслойные железобетонные. Многие люди относятся к ним скептически, помня о панельных домах времен СССР, которые отличались низкой степенью тепло- и шумоизоляции.

Но использование инновационных технологий в процессе производства железобетонных стеновых панелей позволило существенно улучшить их качество, включая тепло- и звукоизоляционные характеристики.

Знакомимся с изделиями о чем говорит стандарт

Железобетонные плиты с эффективным теплоизоляционным материалом изготавливают в полном соответствии международному государственному стандарту 31310, отредактированному в 2015 г. В этом документе указаны типы и размеры трехслойных ЖБИ, их классификация и условия производства.

Структура панели

Несмотря на то что бетонные армированные панели имеют несколько различных слоев, они представляют собой целостное изделие, в которое теплоизоляционный материал укладывается еще на этапе его изготовления.

Панельный бутерброд состоит из 2 слоев бетона, между которыми располагается теплоизоляционный материал. В процессе изготовления плит могут использоваться несколько различных видов утеплителя, каждый из которых выполняет свою функцию.

Панели для строительства внешних стен могут иметь облицовочный слой, который при их установке оказывается внутри помещений. Он является стартовым покрытием для облицовки стен другими отделочными материалами. Для этого может использоваться цементный или известково-цементный раствор.

Внешний и внутренний слой плит соединяется посредством различных гибких связей, таких как:

  1. Распорки. Эти элементы необходимы для крепления 2 слоев бетона и теплоизоляционного материала. Предназначены для компенсации растягивающих и сжимающих механических нагрузок, которые воздействуют на стены дома перпендикулярно.
  2. Подвески. Эти детали необходимы для передачи продольных механических нагрузок на внутренние элементы плит. Их количество определяется с помощью математических расчетов.
  3. Подкос. Он необходим для недопущения смещения всех слоев панели, которые могут появиться во время их перевозки, разгрузки или монтажа.

Кроме этого, существуют жесткие связи, которые представляют собой тонкие армированные прутья, размещенные внутри утеплителя и соединяющие все слои панелей. Такие плиты используются в сфере промышленного строительства.

Конструктив и назначение изделий

Виды железобетонных панелей с утеплителем:

  1. Несущие. Такие плиты могут выдержать не только собственный вес, но и вес других конструкций, устанавливающихся сверху них.
  2. Поэтажно-несущие. Они выдерживают нагрузку межэтажных перекрытий и передают ее на весь каркас дома.
  3. Не несущие. На такие плиты другие конструкции не могут оказывать нагрузку, т. е опираться на них.
  4. Самонесущие. Такие изделия принимают не только свой вес, но и нагрузку, которая находится над ними.

Сэндвич-панели могут изготавливаться с воздушной прослойкой. В этой конструкции декоративный слой находится на небольшом расстоянии от верхней части внешнего слоя, создавая пустоту, наполненную воздухом. Жилой дом, построенный из таких плит, обладает не только высокой степенью прочности, но и имеет эстетичный внешний вид.

Все ЖБ-панели делятся на 3 вида по месту расположения:

  1. Плиты для надземного строительства.
  2. Цокольные.
  3. Изделия для строительства мансардных помещений и парапетов.

Плиты могут обладать различной несущей способностью, отличаться конструктивно и видом применяемых для их изготовления связей:

  1. При выборе панелей на этапе проектирования необходимо учитывать архитектурные и технические характеристики здания или сооружения. Каждый этаж дома строится из рядовых и угловых плит, которые могут быть сплошными или с проемами разных размеров.
  2. Горизонтальная разрезка предусматривает наличие трехслойных ЖБ-изделий полосового и простеночного типа. Продольная разреза, кроме рядовых и угловых полосовых плит, может иметь изделия для подоконников.
  3. В системе маркировки указывается тип и габариты бетонного изделия. Например, 3НЦНЖ означает трехслойная цокольная плита для наружных работ, имеющая жесткие связи.

К этой маркировке добавляется и цифровая, которая указывается в целых числах. Она определяет 3 параметра плиты — длину (L), высоту (H) и толщину (B).

Кроме этого, производитель может указывать вид бетонной смеси, из которой изготовлены ЖБ-изделия. Они могут производиться из тяжелого, ячеистого или керамзитобетона.

Характеристики панелей и требования к ним

Внешние бетонные армированные панели с теплоизолятором характеризуются по нескольким признакам:

  1. Виду бетона.
  2. Виду утеплителя внутренней прослойки.
  3. Размерам слоев.
  4. Типам связей (они могут быть неметаллическими, стальными, шпоночными или в виде ребер жесткости).
  5. Противопожарным рассечкам в теплоизоляторе.
  6. Размерным диапазонам.
  7. По материалу отделки.
  8. Методу соединения смежных деталей в 2 плоскостях.
  9. Способу крепления к каркасу здания.
  10. Конструктивному типу боковых сторон (они могут быть плоскими, дренированными, открытыми и с гребнем).
  11. Наличию пароизоляционного материала или его отсутствию.

Когда осуществляют установку однорядных плит, учитывают их количество, а также размеры оконных и дверных проемов.

Особенности ЖБ-плит:

  1. На этапе проектирования подбирают размеры плит по нескольким критериям: их высота должна быть аналогичной высоте монтажного узла, а толщина делиться на 10, 20 или 50 без остатка. Толщина бетонного слоя может варьироваться от 65 до 120 мм.
  2. Главный слой может изготавливаться из тяжелого, легкого, мелко- или крупнозернистого бетона класса В15, но не ниже. В государственном стандарте указано, что степень прочности бетона через 4 недели должна быть не меньше 70% от его первоначального значения, указанного в проекте.
  3. Для создания среднего слоя ЖБ-плиты может использоваться: каменная вата различной степени жесткости, стекло вата, прочный войлок на основе битума, пенопласт (ПП) М25 или 35 и другие теплоизоляторы.
  4. В соответствии с разработанным проектом, для прочного соединения плит между собой и другими элементами здания их торцевые части оснащаются стальными накладками, закладными элементами, глубокими вырезами или большими выступами.
  5. Для соединения шпонок после заделки швов герметиком на боках изделий сделаны специальные углубления. Кроме этого, торцы изделий по всему периметру могут оснащаться пазами, противодождевыми уплотнителями и ленточными водоотводами.
  6. В комплект ЖБ-панелей входят дверные и оконные изделия, отливы и подоконники с монтажными закладными элементами.
  7. По своему внешнему виду армированные бетонные панели с теплоизолятором должны полностью соответствовать установленным ГОСТом. На их поверхности не должно быть видно открытой арматуры, пятен, кусков раствора в местах крепления закладных элементов и петель. Все изделия должны обрабатываться защитным антикоррозийным и водоотталкивающим составом, маркироваться и отделываться качественными материалами.

Чем отличаются внутренние панели

Государственный стандарт 31310 предусматривает производство панелей для строительства каркаса здания. Для изготовления внутренних перегородок пользуются ГОСТом (12504*2015). Т. к. установка таких плит осуществляется внутри дома, для них не предусмотрена прослойка и теплоизоляционный слой. Поэтому толщина таких изделий небольшая.

На внутренние ЖБ-плиты не воздействуют низкие и высокие температуры, а также влага, поэтому класс морозоустойчивости бетона для их изготовления может быть намного меньше, чем для внешних изделий. Если для производства внутренних плит перекрытия можно использовать бетон F25, то для внешних панелей он должен быть не меньше F100.

Сегодня в Москве, России, странах СНГ возводится большое количество жилых домов из трехслойных железобетонных панелей, обладающих высокой степенью прочности и надежности.

ВНУТРЕННИЕ НЕСУЩИЕ ПАНЕЛИ

Внутренние несущие железобетонные стеновые панели производятся на том же оборудовании, что и трехслойные наружные панели. Они состоят из одного слоя тяжелого бетона класса В25 и стальной арматуры. Толщина внутренних несущих панелей, в зависимости от проектных решений, составляет от 120 до 180 мм.

Проемы во внутренних несущих стенах, также как и в наружных, можно сделать прямоугольными, арочными или другой формы.

Качество внутренней поверхности наружных и внутренних панелей ровное и не требует выравнивающей штукатурки, достаточно нанести финишную шпаклевку, либо, например в санузле, сразу приклеить плитку. Допуски на перепады по всей плоскости панели не более 3-5 мм.

Кроме того, в отличие от стен из блочных материалов, таких как кирпич, газосиликатные и другие блоки, внутренняя поверхность железобетонных панелей не имеет технологических швов и является однородной. На них невозможно образования трещин, а при отделке стен не требуется применение армирующей сетки.

Места соединения панелей внутри дома (межпанельные швы) замоноличиваются бетоном при их монтаже. Угловые межпанельные швы имеют ширину всего 80-120 мм и выполняются в плоскости стен. А межпанельные швы линейных панелей мы проектируем и делаем в створе несущих стен или перегородок, для того чтобы их скрыть.

При изготовлении наружных и внутренних железобетонных панелей, в них можно заложить штробы для разводки электропроводки и другие технологические отверстия по Вашему проекту. Это значительно упрощает и ускоряет процесс прокладки инженерных коммуникаций.

Для возможности разнообразия планировочных решений, конструкторы компании «ИНПАНС» стараются делать минимальное количество внутренних несущих стен, а в некоторых решениях можно обойтись вообще без них. Основная задача внутренних несущих стен служить опорой для плит перекрытия.

ПЛИТЫ ПЕРЕКРЫТИЯ

В качестве межэтажных перекрытий мы применяем проверенные и надежные многопустотные плиты перекрытия марок ПБ и ПК. Благодаря современному оборудованию, плиты ПБ могут быть изготовлены любой длины, при этом, плиты перекрытия толщиной 220 мм могут перекрывать пролет длиной до 7 метров, а плиты толщиной 265 мм могут перекрывать пролет до 10 метров. Стандартная ширина плиты перекрытия составляет 1,2 м.

Помимо стандартной ширины, плиты ПБ могут быть разрезаны вдоль на доборные плиты (размерами 290, 470, 650, 830, 1010 мм). Кроме того, плиты ПБ могут быть разрезаны по диагонали без потери несущей способности.

В случае необходимости, сделать балконную плиту, плиту с консольным опиранием либо с нестандартными отверстиями (например для дымоходов большого диаметра) такие плиты изготавливаются полностью монолитными, по аналогии с внутренними несущими стенами, по соответствующим чертежам с необходимым для каждого конкретного случая армированием.

Для устройства больших проемов в перекрытии пустотных плит (например, для лестничного проема или установки вентиляционных шахт) мы используем стандартные стальные кронштейны PETRA® финского производителя Peikko Group, которые позволяют открыть проем шириной до 2,4 метра (ширина 2-х стандартных плит перекрытия).

Вариативность современных плит перекрытия позволяет выполнить любое объемно-планировочное решение конструкции Вашего дома, а их монтаж занимает всего несколько часов.

ДОСТАВКА И МОНТАЖ СТЕНОВЫХ ПАНЕЛЕЙ

Стеновые панели доставляются с завода панелевозами, стандартный панелевоз может привезти панели общей длиной 2Х7,8 метра и общей массой не более 20 тн. Как правило, стеновые панели для двухэтажного дома 10х10 метров доставляются 10 рейсами стандартных панелевозов. Как правило, доставка и монтаж стеновых панелей производится в один день.

Важно! Необходимо наличие или устройство к участку строительства подъездной дороги для панелевозов и площадки для автокрана.

Монтаж стеновых панелей на фундамент производится автокраном, который располагается между фундаментом и панелевозами. Автокран снимает стеновые панели с панелевоза и сразу их устанавливает в проектное положение на фундаменте. Процесс установки одной панели в среднем занимает 15-20 минут. А все стеновые панели одного этажа монтируются в течение одного-двух дней в зависимости от их количества.

Важно! Выбор автокрана осуществляется исходя из веса стеновых панелей и расстояния, на которое нужно переместить панель. В нашей практике мы использовали краны грузоподъемностью от 25 до 120 тонн.

Стеновые панели монтируются в проектное положение, заранее отмеченное на фундаменте, на подстилающий слой раствора и закрепляются на временных опорах (подкосах):

Сразу после монтажа стеновых панелей на них укладываются плиты перекрытия, промежутки между плит перекрытия армируются:

Соединение стеновых панелей между собой производится путем замоноличивания тяжелым бетоном мест стыковки внутреннего несущего слоя. Для связи стеновых панелей между собой на горизонтальных торцах несущего слоя с шагом 400-500 мм закладываются стальные тросовые петли финского производителя Peikko Group. При установке стеновых панелей рядом, тросовые петли соседних панелей пересекаются, образуя узел, в который вставляется арматура.

Далее выставляется опалубка и все узлы этажа заливаются бетоном одновременно с узлами и промежутками между плит перекрытия. Тем самым образуется единая сборно-монолитная конструкция этажа.

При такой технологии стыковки внутреннего железобетонного слоя стеновых панелей межпанельный шов становится герметичным, он не пропускает ни ветер, ни влагу с улицы.

После схватывания бетона в монолитных участках, временные опоры (подкосы) снимаются и можно приступать к монтажу панелей следующего этажа.

Данная технология монтажа стеновых панелей также используется при строительстве современных многоэтажных панельных домов, и поправу считается самой передовой в отрасли.

Стеновые панели практически не дают усадки, и к внутренней отделке можно приступать сразу после окончания строительно-монтажных работ.

ЗАЧЕКАНКА МЕЖПАНЕЛЬНЫХ ШВОВ

После замоноличивания, внутренний несущий железобетонный слой полностью исключает проникновение в дом влаги и ветра с улицы, в промежуток между утеплителем, устанавливается полоса из минеральной ваты либо это место заполняется монтажной пеной. Затем в створе наружного железобетонного слоя вставляется жгут из вспененного полиэтилена и сверху наносится герметик для межпанельных швов, который можно окрасить в цвет фасада. В отличие от многоэтажных домов, для наших домов мы делаем швы шириной всего 20-25 мм.

Для скрытия межпанельных швов снаружи дома, их можно просто покрасить в один цвет с фасадом, либо закрыть, например угловой клинкерной или фиброцементной плиткой, а также использовать другие материалы.

Для скрытия межпанельных швов снаружи дома, их можно просто покрасить в один цвет с фасадом, либо закрыть, например угловой клинкерной или фиброцементной плиткой, а также использовать другие материалы.

МЕЖКОМНАТНЫЕ ПЕРЕГОРОДКИ

Не несущие внутренние стены (перегородки) могут быть сделаны из любых материалов по Вашему желанию. Компания «ИНПАНС» предлагает изготовить перегородки из влагостойких полнотелых пазогребневых плит (ПГП). Перегородки могут быть выполнены однослойными из ПГП толщиной 80 или 100 мм, а также многослойными с включением между двух перегородок слоя минеральной ваты для увеличения звукоизоляции между комнатами.

Срок монтажа внутренних перегородок составляет 1-2 недели, и производится одновременно с монтажом чердачного перекрытия и крыши.

ЧЕРДАЧНОЕ ПЕРЕКРЫТИЕ

При наличии холодного чердака в Вашем доме, чердачное перекрытие выполняется по деревянным балкам с шагом 600 мм, между которыми укладывается слой утеплителя (минеральной ваты) толщиной 200 мм, затем сверху перекрытия перекрестно укладывается еще один слой минеральной ваты толщиной 100 мм.

Таким образом, общая толщина утеплителя составляет 300 мм, такое утепление входит в базовую комплектацию наших домов.

Снизу перекрытие подшивается пароизоляционной пленкой для предотвращения попадания влаги изнутри помещения в утеплитель.

СКАТНАЯ КРЫША

Скатная крыша выполняется по деревянным стропилам, далее крепится ветро-влагозащитная мембрана, обрешетка и контробрешетка. В зависимости от Ваших пожеланий и архитектурных решений, устраивается финишное покрытие. Самыми распространенными являются металлочерепица или мягкая битумная черепица.

При выборе материалов финишного покрытия крыши, мы рекомендуем использовать только качественные материалы с подтвержденной гарантией изготовителя.

ПЛОСКАЯ КРЫША

Устройство плоской крыши производится по железобетонным плитам перекрытия, с установкой железобетонных парапетов по всему периметру дома. Перекрытие утепляется эсктрудированным пенополистиролом, делается разуклонка, нижний слой гидроизоляции и двойной слой верхней гидроизоляции. Также устраиваются водосточные воронки, вентиляционные и дымоходные каналы.

Коттеджи из панелей ЖБИ имеют ряд преимуществ перед аналогичными постройками из других строительных материалов. Но также этот тип строительства обладает и своими особенностями, с которыми нужно ознакомиться.

Готовый проект дома собранный из ЖБИ панелей

Устройство материала

Чтобы понять разницу между домом из кирпича и домом из железобетонных изделий (ЖБИ), нужно сперва разобрать, что это за материал. От обычного строительного бетона он имеет одно отличие — стальные «внутренности». В процессе отливки в изделие добавляется стальная арматура. Она улучшает такие качества железобетона, как сопротивляемость нагрузкам, и повышает его способности к изгибанию.

Благодаря улучшенным физическим качествам появилась возможность выпускать готовые блоки из нового материала, из которых по типовым проектам стали строить многоэтажные дома и частные коттеджи.

Преимущества и недостатки панельных домов

«Типичность» стала главным аргументом противников строительства жилых зданий из железобетонных панелей.

Процесс возведения панельного частного дома

По их мнению, такой дом не будет оригинальным. Однако практика показала, что ЖБИ с успехом можно использовать, чтобы возвести самый оригинальный коттедж в мире.

К другим недостаткам железобетонных домов относят такие:

  • плохая теплоизоляция;
  • низкая шумоизоляция;
  • большой вес плит.

Но все эти аргументы были актуальными 20 лет назад. В настоящее время для изготовления арматуры вместо стали начали использовать так называемые композиционные материалы. Это полимеры, которые улучшают физические качества железобетонных панелей, одновременно снижая стандартный вес плиты.

Для защиты поверхности самого бетона производители используют специальные покрытия, которые берегут материал от воды, так называемая проникающая гидроизоляция дома, а также снижающие потери тепла и проходимость звуков. Но не в этом основные преимущества, которыми обладают железобетонные постройки.

Пример установки ЖБИ панелей в каркас дома

Главным плюсом является быстрота, с которой можно возвести коттедж из такого материала. К тому же по долговечности и прочности дома из железобетонных конструкций не имеют себе равных. Как шутят строители, такой дом способен противостоять ураганному ветру и выдержать силу небольшого взрыва.

К преимуществам ЖБИ также относят:

  • возможность строиться в любое время года;
  • разнообразие вариантов планировки;
  • возможность наружной отделки домов любым материалом;
  • защиту от огня;
  • дешевизну материалов.

А теперь рассмотрим все стадии, которое проходит строительство коттеджей из железобетона.

Этап первый: проектирование

Первый шаг — самый важный. Потому что в процессе составления сметной документации и расчета размеров будущего дома выполняется и расчет количества деталей, которые потребуются для его возведения.

Планировка всех этажей частного двухэтажного дома из ЖБИ панелей

При этом учитывается все, включая наружные стены, оконные и дверные проемы, горизонтальные перекрытия и внутридомовые стены. Этот метод хорош тем, что он защищает хозяина будущего дома от недобросовестных строителей. При возведении дома из кирпича всегда есть возможность списать строительные материалы на «перерасход». С ЖБИ такой номер у ловких прорабов не пройдет. Большинство строителей предлагают заказчикам типовые проекты домов.

Но разнообразие деталей, выпускаемых производителями, позволяют создать уникальное, единственное в своем роде строение.

Благодаря этому многие современные коттеджи из железобетонных составляющих имеют неповторимый вид.
Наличие же типовых проектов освобождает от забот застройщиков, которые видят свой будущий дом простым и практичным.

Этап второй: фундамент

Как уже отмечалось выше, железобетонным составляющим домов свойственен значительный вес.

Процесс укладки фундамента для коттеджа из ЖБИ панелей

Поэтому и основание под них нужно делать капитальным, способным выдерживать большие нагрузки. Под строительство объектов этого типа возводят ленточный фундамент со значительным углублением. В бетон для большей сопротивляемости вводят стальную арматуру.

Высота такого фундамента составляет в среднем 180 см, из которых 140 см расположены ниже уровня земли. Ширина основания — не менее 40 см. До заливки бетона на дно траншеи укладывается песчаная подушка, которая выполняет роль дренажа и амортизатора. Ее толщина — 20 см. Для подушки берут крупный речной песок.

Схема для монтажа фундамента под дом из ЖБИ панелей

Сам фундамент отливается из бетона марки М250 и выше, в который вводится стальная арматура. Для вентиляции в процессе изготовления фундамента над поверхностью земли делаются отверстия-заготовки для душников.

Опытные строители отмечают, что время года не влияет на качество выполнения работ по заливке фундамента под дом. Однако в дождливую погоду основу дома лучше не делать. А если работы ведутся летом, в жару, то по мере застывания бетон рекомендуется смачивать водой. Это убережет его от растрескивания из-за высокой температуры.

Этап третий: монтаж стен и перекрытий

В отличие от домов из дерева или кирпича, железобетонные коттеджи в одиночку не строят. Здесь нужна техника и много рабочих рук. Такое строительство имеет большой плюс: монтаж проходит намного быстрее, чем возведение стены из обычных строительных материалов.

Бывалые мастера не советуют завозить на строительную площадку сразу все детали будущего дома. Они довольно громоздкие, и их складирование отнимет много полезной площади. Поэтому рекомендуется забирать их от производителя по мере того, как строится дом.

Обратившись к тем, кто выпускает ЖБИ, со своим индивидуальным проектом, будущий хозяин дома может получить набор готовых элементов для выполнения работ.

И все, что останется строителям, это собрать панели, как конструктор. Но, в отличие от популярных детских игрушек, коттедж получится на все 100% реальным.

Установка стен из ЖБИ панелей

Для работ по монтажу понадобятся автокран, бетономешалка и сварочный аппарат. Первая нужна, чтобы заделывать швы, а второй — для связки элементов конструкции между собой.

Впрочем, с развитием технологий строительства и производства стеновых панелей из железобетона меняются и технологии сборки. И сейчас все работы выполняются намного быстрее и качественнее, чем 20-30 лет тому назад. И не только время, но и деньги экономятся при таком типе строительства домов.

Этап четвертый: утепление и отделка

В зависимости от того, какой тип конструкции плит был выбран для строительных работ, решается вопрос, нужно ли защищать коттедж от воды, мороза и звуков.

Процесс утепления дома из ЖБИ панелей

Популярная в Европе технология быстровозводимых зданий предлагает новую конструкцию стеновых блоков. В разрезе она напоминает слоеный пирог: сперва идет железобетон, потом утеплитель, а завершает все слой готовой штукатурки. Поэтому строителям даже не придется тратить время на внутреннюю отделку стен. Все, что понадобится сделать после того, как завершено строительство, так это заделать швы между блоками.

По такой же технологии, кстати, делаются и плиты для горизонтальных перекрытий. Что же касается стиля фасадной части здания, то некоторые хозяева оставляют ее без изменений. Но если уж возникло желание отделать коттедж снаружи, то здесь нет практически никаких преград для полета фантазии.

Дома такого типа можно облицовывать натуральным и искусственным камнем, красить чуть ли не каждый месяц в новый цвет, отделывать сайдингом под дерево или какой-нибудь другой материал. Коттеджи из железобетона не нуждаются в предварительной отделке или шпатлевке, они уже готовы к оформлению в любом стиле. Зная все это, можно стать владельцем собственного нового дома всего за полгода.

Издавна строительным материалом служили кирпич, камень, дерево. В прошлом веке был разработан новый вид строительства – возведение вертикальных стен из армированных бетонных плит стандартных размеров. Разработаны серии стеновых панелей различного назначения.

Созданы альбомы чертежей для панелей разного вида, с расчетами, учитывающие особенности эксплуатации. ГОСТы на железобетонные стеновые панели предписывают, типоразмеры, виды бетона и стали для закладных и арматуры, место установки.

Типы и серии железобетонных стеновых панелей

Стеновая панель представляет железобетонную плиту, устанавливаемую вертикально. В зависимости от места применения используются пустотелые, монолитные железобетонные формованные изделия, сплошные или с выемками под окна и двери.

Стеновые ЖБИ выпускаются поточным методом. Это значит, объект собирается из разных панелей, относящихся к одной серии. Они унифицированы, относятся к одному альбому чертежей, независимо, строят дом в Москве или Чите. Набор отлитых деталей является конструктором для строителей.

Виды ж/б панелей и ГОСТы

  • Железобетонные наружные стеновые панели для жилых и общественных зданий могут отливаться из легкого пористого и тяжелого бетонов. Однослойные и двухслойные изделия соответствуют ГОСТ 11024-20-12
  • В строительстве жилых и административно-культурных объектов используют панели стеновые трехслойные железобетонные, монолитные или сборные, отвечающие требованиям ГОСТ 31310-2015.
  • Для контура цокольного этажа и подполья используют однослойные и двухслойные вертикальные конструкции соответствующие ГОСТ 11024-84 и ГОСТ 11118-73.
  • Внутренние стеновые панели из железобетона по характеристикам отвечают ГОСТ 12504-80.
  • Однослойные железобетонные стеновые панели для ограждения или инженерно- техническим конструкциям выпускаются по ТУ завода изготовителя.

Особые требования к арматурной сетке и закладным элементам. Для каждого вида плит применяется определенный вид стали, диаметр стержней, марка и класс арматурной сетки. Определяющими на этом этапе являются ГОСТ 31310-2005 и ГОСТ 1305-2003.

Значение серии ж/б изделий и альбома чертежей

В рамках ГОСТ разрабатывается серия внутренних или наружных железобетонных стеновых панелей с учетом допусков под условия эксплуатации, применяемого бетона, арматуры, закладных и схемы соединения блоков. То есть альбом регламентирует всю технологию от изготовления до установки стеновой плиты.

Как пример, серия 1.432.1-21 трехслойных железобетонных стеновых панелей рассчитана для плит длиной 6 м, устанавливаемых в отапливаемом помещении. Воздушная среда – влажная и агрессивная. Для этой серии разработано 7 выпусков альбома.

Каждый несет рабочие чертежи для одного сегмента – стеновые панели, монтажные узлы, применяемая арматура и прочее. Характеристики и размеры стеновых железобетонных панелей

В зависимости от нагрузки, которую будет нести стеновая панель подбирается арматура и закладные. Причем армирование выполняется с предварительным напряжением или обычным способом.

Плотность бетона, для отливки:

  • особо легкий, с пористым наполнителем – 700 кг/м3;
  • легкий – массой до 1800 кг/м3;
  • тяжелый – плотность до 1800 кг/м3;
  • особо тяжелый – выше 2 500 кг/м3.

Вес стеновых железобетонных панелей зависит от марки бетона, и количества слоев в сборке. Панели могут использоваться в каркасном строительстве, закрепляться закладными на опору, и тогда сборные железобетонные стеновые панели считают не несущими.

В бескаркасном контуре стеновые панели несущие, загруженные. Они могут быть также самонесущими и поэтажно несущими.

Размеры стеновых панелей

Типовые размеры наружных железобетонных стеновых панелей регламентированы ГОСТом.

  • Для жилых зданий используют плиты длиной 6 м, и 3 м, 1,5 м как доборные в проемах, с оконными гнездами, выемками под двери.
  • Для производственных помещений 6, 12 м длиной.
  • Высота всех плит 1,2 или 1,8 м.

Примечания:

  1. Координационные высоты панелей, указанные в таблице выше, относятся к панелям, предназначенным для надземных этажей, а координационные толщины панелей – к однослойным и сплошным слоистым панелям. В случаях, когда в таблице приведено несколько модулей, координационный размер кратен одному из этих модулей.
  2. Координационную длину угловых панелей определяют в зависимости от толщины панелей и конструкции угловых стыковых соединений.
  3. Координационную длину простеночных панелей допускается принимать отличной от приведенной в таблице в случаях, когда это обосновано особенностями решения фасадов зданий.
  4. Координационную толщину панелей, кратную модулю М/4, равному 25 мм,следует предпочтительно принимать для слоистых панелей.
  5. Допускается при соответствующем технико-экономическом обосновании и с разрешения госстроев союзных республик принимать координационную толщину панелей более 400 мм.
  6. Допускается изготовлять панели координационными размерами, отличными от указанных в табл. 1, на действующем оборудовании до 01.01.91, а также в случаях, предусмотренных СТ СЭВ 1001-78.

Толщина железобетонных стеновых панелей

Толщина железобетонных стеновых панелей зависит от количества слоев и составляет 20-50 см. Внутренние железобетонные стеновые панели представляют крупногабаритные плиты на высоту этажа и нужную длину, до 6 метров.

Примечание. Минимальную толщину слоя, указанную в скобках, допускается принимать по согласованию между проектной организацией – автором проектной документации на конкретные здания и предприятием-изготовителем при наличии технико-экономического обоснования, разработанного на основании экспериментальных данных, полученных для конкретных конструкций панелей с учетом условий их применения в зданиях и климатических воздействии.

Изготавливают их из обычного или гипсового бетона, укрепляют армирующей сеткой и покрываются слоем антикоррозийной замазки. Внутренняя плита обычно бывает однослойная, самонесущая.

На ребре каждой панели есть маркировка, которую нужно уметь читать:

Порядок изготовления трехслойных железобетонных стеновых панелей

Однослойная плита изготавливается из бетона. Двухслойная имеет каркас, и теплозащитный слой, который одновременно выполняет функцию пароизоляции. Сверху конструкция покрывается цементно-песчаной стяжкой. Несущий слой устанавливают со стороны помещения.

Но в современном строительстве наиболее часто используют трехслойные стеновые плиты. Здесь панель с арматурой устанавливается на наружную сторону, укладывается слой теплоизоляции и внутренняя и наружная панель скрепляются арматурой.

Утеплитель в железобетонные стеновые панели выбирается, исходя из климатических условий эксплуатации. Армирование двухстороннее, каркасом и сеткой с защитой ее от ржавления специальной замазкой.

Крепление железобетонных стеновых панелей

Один из ответственных этапов панельного строительства – сборка каркаса здания или сооружения. На каждой панели предусмотрены специальные металлические элементы крепления, называемые закладными.

Какой тип замка выбрать, предписывает Типовая Технологическая Карта (ТТК) и является ссылочным документом в разработке ППР – проекта производства работ.

Однослойные или многослойные железобетонные панели закрепляют на каркасе одним из способов:

  • Методом сварки. Закладной элемент панели соединяется с ригелем балки с помощью стальных накладок.
  • Болтовое соединение – закладная и накладка соединяются винтовым соединением. От коррозии узел защищают бетонированием.
  • Соединение петля-скоба, когда накладка выполнена из арматуры, на нее вставляется петля закладной, место соединения бетонируется.
  • Самофиксирующие связи – когда замок выполняется между панелями. Одна из них имеет разомкнутую петлю, другая – выступающий штырь. При монтаже получается соединение, которое по действиям напоминает навешивание полотна двери на выступающие стержни.

Технические требования к стеновым панелям

Независимо, изготовлены железобетонные панели для промышленных зданий или жилых помещений они должны отвечать требованиям:

  • Точные размеры и формы с точно установленными закладными соединениями.
  • Соответствие веса и размера стандарту.
  • Соблюдение допусков, установленных ГОСТ, с погрешностью не более 10 мм.
  • Все металлические компоненты должны быть установлены заподлицо, для закладных допускается выход на 3 мм над поверхностью.

Стеновые панели ускоряют и удешевляют строительство зданий и сооружений. Их используют в малоэтажном и высотном строительстве. Выбирая формованные изделия из железобетона, следует обращать внимание на соответствие плиты требованиям стандартов и ее назначение.

Публикации по теме:

  • Проект дома 12 на 14

    Проекты домов 12х14Особенности проектов домов 12х14 мПредставляем вашему вниманию проекты домов 12х14, площадь которых варьируется…

  • Душевая из пластиковых панелей

    Современная замена ванной, очень популярное изделие, экономичное, мобильное, прекрасно смотрится в интерьере. Лишь один недостаток…

  • Панели нэк

    СТРОИТЕЛЬНАЯ ТЕХНОЛОГИЯ «НЭК»Преимущества строительства из домокомплектов «НЭК» Простой контроль качества — вы легко можете проконтролировать…

Бетонные стеновые панели: преимущества, виды, монтаж

Универсальность, простота использования и прочность — все эти характеристики относятся к бетонным стеновым панелям. Сегодня они применяются в частном домостроении и при возведении промышленных зданий. Если в основу заложен арматурный каркас, конструкция уже является железобетонной и более прочной.

Преимущества стеновых бетонных панелей

Сегодня эти изделия являются неотъемлемой частью строительства. Они появились на рынке чуть больше 50 лет назад, и за это время успели стать востребованными. Они применяются в малоэтажном строительстве и обеспечивают скорость проведения работ, что и является одним из их плюсов. Дополнительным преимуществом является еще и огнеупорность материала.

Стеновые панели из бетона можно эксплуатировать при разных температурных и влажностных режимах, они готовы прослужить длительное время и обеспечивают необходимый для жилых построек уровень теплоизоляции и шумоподавления. Если дом возведен из бетонных стеновых панелей, для владельца квартиры это значит, что стены перед декоративной отделкой нет необходимости дополнительно подготавливать и тщательно выравнивать. Это экономит денежные средства и время.

Классификация стеновых бетонных панелей

Бетонные стеновые панели можно классифицировать по назначению. Изделия могут использоваться для внешних или внутренних стен. Классификацию можно провести еще и по количеству слоев. Панели могут быть:

  • однослойными;
  • двухслойными;
  • трехслойными.

У первых присутствует наружная отделка, исключающая негативное воздействие внешней среды. Двухслойные панели хоть и являются сплошными, но состоят из двух элементов – несущего и высокоплотного. Последний предусматривает наличие арматуры. Наиболее распространены в строительстве трехслойные панели, у которых имеется несущий слой; слой, укрепленный арматурой, и слой теплоизоляции или воздушной прослойки.

Бетонные стеновые строительные панели можно классифицировать еще на сплошные и сборные. По статической схеме они подразделяются на:

  • самонесущие;
  • ненесущие;
  • навесные.

Последние характеризуются небольшими размерами и малым весом, тогда как несущие панели предназначены для бескаркасного строительства. В малоэтажном строительстве используются железобетонные изделия, которые отличаются между собой по назначению. Одни из них предназначены для чердаков, другие для подполья и цоколя, тогда как третьи — для этажей.

Наименование стеновых плит

По наименованию бетонных стеновых панелей для малоэтажного строительства можно понять, для каких целей предназначены изделия. Например, в продаже можно встретить плиты для возведения надземных этажей. Они являются однослойными и маркируются как 1НЦ.

Увидев в названии количество слоев, следует обратить внимание еще и на то, является изделие цельным или составным. Так, если взглянуть на маркировку и увидеть обозначение 3НЦ, можно понять, что перед потребителем трехслойные цельные плиты для надземного строительства.

Размеры стеновых конструкций

Стеновые панели могут изготавливаться из обычного или легкого ячеистого бетона, а их размеры могут быть самыми разными. Что касается длины, ее минимальный и максимальный предел составляют 1200 и 12000 мм соответственно. По высоте изделия бывают 600 мм минимум и 4200 мм максимум. Что касается толщины, здесь разброс несколько меньше и варьируется в пределах от 200 до 400 мм.

Марки бетона

Бетон в основе стеновых панелей может иметь разные характеристики по прочности на сжатие, особенно эти показатели отличаются у легких и тяжелых бетонов. Однослойные изделия, а точнее их основной слой, может изготавливаться из автоклавного ячеистого или легкого бетона. В первом случае марка варьируется от М25 до М100, во втором — от М50 до М150. Двухслойная сплошная панель, а вернее ее несущий слой, изготавливается из бетона марки М150 и выше. В основе лежит тяжелый бетон. Несущая трехслойная сплошная панель выполняется из бетона марки М100 и выше. Если изделие не должно быть несущим, в его основе бетон марки М75.

Качество поверхности

Бетонные панели для малоэтажного строительства должны иметь поверхность, внешний вид которой соответствует требованиям ГОСТ 13015.0. Если изделие будет использоваться для обустройства герметизируемой зоны, на его поверхности недопустимы углубления больше 2 мм, тогда как диаметр раковин не должен превышать 3 мм. Наплывы и впадины не должны иметь глубину или высоту больше 2 мм. На метр длины сколы ребер не должны быть длиннее 30 мм. Их глубина не должна превышать 2 мм.

Маркировка панелей

Для того чтобы разобраться с маркировкой бетонных или железобетонных изделий, следует рассмотреть одну из них в качестве примера. Наиболее распространенной маркой плиты является ПСТ 63.18.2,5-ТП-11/12. Она предназначена для возведения промышленных построек и является трехслойной.

Первые три буквы обозначают вид панели и ее размеры. В данном случае это ПСТ – стеновая трехслойная панель. Второй буквенный фрагмент обозначает класс и вид бетона. В данном случае в процессе производства использовался тяжелый бетон. Легкий и ячеистый бетоны обозначаются первыми буквами слов — Л и Я.

Способы монтажа бетонных панелей

Железобетонные панели имеют еще одно важное преимущество — их можно использовать как б/у материал. Если фундамент позволяет и способен претерпевать еще более высокие нагрузки, облагородить внешние стены можно методом монтажа фасадных панелей. Обычно между ними и основной стеной устанавливается еще и теплоизоляционный материал с воздушной прослойкой. Такая облицовка хороша тем, что может почти идеально имитировать натуральные материалы, а именно:

  • камень;
  • кирпич;
  • древесину.

Отделка, как и панели для возведения стен, способна прослужить около 30 лет, не горит и сохраняет свой первозданный цвет даже при сложных условиях эксплуатации. Для того чтобы не заниматься кладкой кирпича на цемент, можно выбрать имитацию этого материала, установив фасадные панели, которые крепятся на обрешетку.

Внимание! Панели устанавливаются только после того, как каркас здания будет готов. Перед тем как поднимать изделия, их группируют в отдельные кассеты. Такой подход считается наиболее экономичным, так как кассеты можно компактно расположить между краном и будущим зданием, а также за краном или перед техникой.

Несмотря на все имеющиеся у бетонных панелей преимущества, они обладают одним важный недостатком – большой массой, справиться с которой может лишь подъемная техника. Да и для погрузо-разгрузочных работ тоже придется заручиться помощью специалистов и дополнительного оборудования.

Для упрощения монтажных работ плиты лучше распределить по периметру будущего здания. Для того чтобы избежать неприятных последствий, перед креплением стропил необходимо очистить закладные элементы и проверить состояние петель. Нужно обеспечить равномерное натяжение подвесок. Если дом будет строиться на железобетонном каркасе, то плита укладывается на 2-сантиметровый слой раствора. Приступать к работам необходимо с распорного изделия. Его положение проверяется во всех углах, а после осуществляется приваривание к закладным деталям. Все остальные изделия привариваются в трех углах, так как четвертый будет недоступен из-за уложенного ранее изделия.

Как только будет завершен монтаж несущего каркаса, можно приступать к установке стеновых панелей. Их крепление осуществляется по маякам на слой раствора и герметика. Панели должны находиться в горизонтальных рядах. Если здание будет довольно высоким, изделия должны быть ориентированы вертикально. Их положение контролируется по горизонтали и вертикали.

Для дома с тяжелыми стенами потребуется усиленный фундамент, который должен быть углублен ниже линии промерзания почвы. Если строительство ведется в средней полосе России, то это значение составляет примерно 150 см. Основание может быть ленточным, но его необходимо хорошо армировать. Альтернативным решением выступают блоки.

Как только траншея под основание будет готова, на ее дно засыпается слой из песка и щебня, трамбуется и проливается водой несколько раз. Далее можно заняться изготовлением опалубки и установкой арматурного каркаса. Для этого используются 10-миллиметровые прутья. Будущий фундамент заливается бетоном высокой прочности. Желательно использовать раствор марки М150.

Внимание! После того как траншея будет подготовлена, можно опустить на ее дно бетонную подготовку, на которую устанавливаются фундаментные блоки.

На следующем этапе после высыхания основания можно переходить к установке панелей и перекрытий. Строительство сопровождается использованием большого количества раствора. Приготовить его вручную при таких масштабах вряд ли получится, или будет очень неудобно и долго. Лучше заказать бетон с завода или использовать бетономешалку. Раствор будет использоваться не только для заполнения швов, но и крепления перекрытий.

Ограничений по выбору материала для кровли в случае использования железобетонных панелей нет. Они обладают достаточно внушительным уровнем несущей способности. Отделку панелей тоже можно начинать сразу же после строительства, так как материал изготавливался и отлеживался в условиях завода, набирая прочность, а значит, уже не усядет.

Внимание! У железобетонных панелей множество преимуществ, но одним из минусов является то, что такой дом довольно сложно прогреть, а теплоизоляционные работы предусматривают использование материалов внушительной толщины, что делает строительство дороже. Кстати, возведение дома из бетонных изделий имеет более высокий ценник по сравнению с другими технологиями.

Панели монтируются изнутри дома, а установка ведется между парой колонн. Поэтому при формировании кассеты следует учитывать число ЖБИ для перекрытия участка по высоте. Рабочие должны находиться в том месте, где изделия будут соединяться с колонной. Там происходит прием панелей после их подъема краном. При строительстве дома из железобетонных тяжелых панелей важным моментом является организация рабочего пространства. Нужно освободить его не только по периметру здания для перемещения тяжеловесной техники, но и позаботиться о свободном месте в точке крепления панелей.

Внимание! Неотъемлемой частью здания являются железобетонные колонны. Если ведется работа по возведению промышленного объекта, колонны должны располагаться в стаканах фундаментов. Распределяются колонны до их монтажа таким образом, чтобы технике пришлось делать минимум передвижений, а рабочие смогли безопасно и беспрепятственно передвигаться по площадке для закрепления конструкции.

При отсутствии поперечного перекрытия нужно воспользоваться:

  • подъемником;
  • подмостками;
  • люльками.

Одним из важных этапов строительства дома по такой технологии выступает сооружение первого ряда. Для исключения сопутствующих рисков необходимо удостовериться в правильном положении панели и особо тщательно выверить горизонталь и вертикаль. Внешний слой изделия будет выполнять множество функций — эстетическую, защитную и опорную. В связи с этим швы следует заделывать не только тщательно, но и аккуратно. Железобетонные изделия, которые будут располагаться изнутри, следует монтировать до устройства перекрытия верхнего этажа.

Бэнпан Смоленск — Kale Color

Что такое БЭНПАН?

БЭНПАН — это запатентованная инновационная технология капитального домостроения из железобетонных ребристых панелей, предназначенная для быстрого возведения малоэтажных жилых и общественных зданий. Это целый комплекс, объединяющий в себе проектные решения, и ЖБИ комбинат.

Данная технология панельного домостроения позволяет изготавливать стеновые панели любой конфигурации, что позволяет воплотить в жизнь практически любое архитектурное решение Вашего будущего дома. Основными элементами технологии БЭНПАН являются железобетонные стеновые панели высокой заводской готовности БЭНПАН, БЭНПАН+, БЭНПАН Премиум и плиты перекрытий. Это инновационный строительный материал, обеспечивающий высокие показатели по прочности и энергоэффективности.

БЭНПАН — это технология бескаркасного домостроения. Несущими конструкциями здания в данном случае служат непосредственно сами стеновые панели и плиты перекрытия. В производстве панелей БЭНПАН используется фибробетон марки В20 или В30. Стеновые панели и плиты перекрытия, как и все детали системы БЭНПАН, полностью изготавливаются на заводе. Это позволяет свести до нуля влияние человеческого фактора при сборке домокомплекта.

  • Панели из серии БЭНПАН производятся с установленным внутренним слоем теплоизоляции (пенополистирол, минеральная вата, ЭППУ, PIR).
  • В панели БЭНПАН заранее оставляются проемы и отверстия для пропуска инженерных коммуникаций.
  • Монтаж панелей производится на болтах, анкер-шпильках, сварных закладных элементах. Именно эти способы монтажа позволяют выполнять сборку коробки дома БЭНПАН в короткие сроки и в любых климатических условиях.
  • После монтажа коробки здания выполняется устройство инженерных коммуникаций в предусмотренных технологических отверстиях в стеновых панелях и плитах перекрытий. Затем в зависимости от типа стеновых плит внутренняя поверхность либо шпаклюется, либо монтируется гипсокартон или другой листовой материал.
  • Гипсокартон крепится к конструкциям на установленный в заводских условиях профиль из оцинкованной стали. Такой подход (с отказом от штукатурки) позволяет максимально сократить трудозатраты на внутреннюю отделку помещений.

Конструкции прошли весь комплекс испытаний. Это испытания конструкции под нагрузкой, испытание по огнестойкости в огневой камере, шумоизоляция, звукоизоляция, теплоизоляция и экологическая безопасность.

По всем этим пунктам получены соответствующие сертификаты, подтверждающие возможность использования конструкций в любых зданиях: жилые дома, детские сады, и.т.д.

Технология БЭНПАН позволяет изготавливать панели различных форм и размеров — как серийно, так и по индивидуальным проектам, что обеспечивает разнообразие архитектурных форм и решений.

Дом, построенный по технологии БЭНПАН — это дом высокой заводской готовности, но в индивидуальном частном домостроении. Вместе с готовым домом заказчику предоставляется паспорт на дом, а так же паспорта качества на каждую панель, исполнительная документация и гарантийный сертификат.

Сегодня БЭНПАН включает в себя все разделы проектирования, производства, монтажа и контроля качества. Эти процессы взаимосвязаны в рамках единой системы на основе ЖБИ технологии.

Технология БЭНПАН объединяет в себе три основных этапа работы:

Проектирование.

Проектирование в рамках технологии БЭНПАН включает в себя эскизное и архитектурное проектирование, а также создание уникального рабочего чертежа каждой ж/б панели по стандарту «проектирование по технологии БЭНПАН».

Работа над проектом ведется на базе программного комплекса Revit, реализующего принцип информационного моделирования зданий. Параллельная работа над всеми разделами проекта позволяет уменьшить сроки проектирования панелей с заложенными технологическими отверстиями под прокладку инженерных коммуникаций.

Производство.

Наша компания — это домостроительный комбинат нового поколения. Основным видом продукции являются железобетонные стеновые панели и плиты перекрытий БЭНПАН, БЭНПАН+ и БЭНПАН Премиум. На заводе также производятся и другие железобетонные изделия, есть производство пенопласта, цех металлообработки, цех деревообработки, производство окон и дверей. Вся продукция проходит проверку в аккредитованной сертифицированной лаборатории. Вся производственная деятельность построена в рамках единого бизнес-процесса и автоматизирована.

Строительство.

Строительство по технологии БЭНПАН осуществляется специализированным подразделением по специально разработанным регламентам монтажа железобетонных панелей БЭНПАН, БЭНПАН+ и БЭНПАН Премиум. Строительство по технологии БЭНПАН минимизирует мокрые процессы на строительной площадке, сокращает сроки строительства при минимальном количестве работающих специалистов на площадке. Контроль за строительным процессом осуществляют специалисты технического надзора.

Подъемный бетон

Подъемный бетон получил свое название от способа строительства: путем подъема или наклона панелей с помощью крана для формирования стен зданий. Панели могут изготавливаться разных форм и размеров, включая плоские и изогнутые секции. Укладка бетона выполняется быстро и легко, потому что она выполняется на земле. Поверхности пола служат литейными станинами или иногда сооружаются отдельные литейные станины. Панели можно ставить друг на друга, если пространство ограничено. Поскольку панели отливаются на месте, их размер не ограничивается соображениями автоперевозки.Панели обычно довольно большие по размеру, поэтому в зданиях относительно мало стыков.

Подъемно-поворотные конструкции строятся по разумной цене, не требуют значительного обслуживания и обеспечивают долгий срок службы и скорость строительства с минимальными капитальными вложениями. Панели обычно служат структурой и отделкой и могут быть изолированы по мере необходимости для повышения энергоэффективности.

Хотя эта отрасль возникла более 100 лет назад, ее популярность заметно выросла после создания в 1980 году комитета Американского института бетона (ACI 551), посвященного этой отрасли, и создания в 1986 году Ассоциации бетона с подъемным механизмом.Совсем недавно достижения в гибкости дизайна, отделки премиум-класса, улучшенные методы изоляции и возможность строить меньшие конструкции более экономично повысили привлекательность подъема. Подрядчики, специализирующиеся на подъемно-поворотных механизмах, доступны по всей территории США

.

Следующие пункты описывают откидные бетонные панели для малоэтажных зданий:

  • Преимущества
  • Размеры
  • Производство и физические свойства
  • Установка, подключение и отделка
  • Устойчивое развитие и энергия
  • Строительные нормы и правила
  • Сравнительная стоимость
  • Проектов

Преимущества

Подъемно-поворотное устройство — быстрое и экономичное.В то время как он стал популярным для больших зданий с простыми планами этажей («строительство больших коробок»), новые методы расширили рынок, улучшив гибкость проектирования, сделав их пригодными для небольших зданий и тех, которые имеют более сложную планировку. Ключ к успеху — это планирование. Теперь школы, магазины, коммерческие и общественные проекты, религиозные сооружения и жилые дома также являются обычным явлением.

Подрядчики ценят то, что большая часть работы выполняется на уровне земли, выполняется быстро и эффективно, а их повторение позволяет сэкономить время.Изготовление откидных бетонных панелей по сути похоже на заливку плит вместо стен. Установка опалубки происходит быстрее и проще, в том числе блокировка дверных и оконных проемов. Панели отливаются на месте, и если места мало, их можно складывать в штабель, чтобы свести к минимуму неудобства на стройплощадке.

Отделка бетона откидной панели после заливки

Владельцы обращают внимание на прочность и устойчивость к стихийным бедствиям, воде и насекомым. Большая масса и большой размер панели также приводят к хорошей энергоэффективности и звуковым характеристикам благодаря тепловой массе и воздухонепроницаемым корпусам.

Размеры

Неизолированные панели обычно имеют толщину от семи до 12 дюймов. Утепленные панели представляют собой конструкцию типа «сэндвич». Наружная поверхность имеет толщину от двух до трех дюймов, изоляция — от двух до шести дюймов, а внутренний слой представляет собой структурную часть стены с толщиной, аналогичной неизолированным панелям. Соединители вставляются через изоляцию, чтобы связать две бетонные поверхности вместе.

Достижения в подъемных вставках означают, что существует меньше ограничений на размер панелей: обычно используются панели высотой 50 футов.Площадь пола может быть одним из ограничений по размеру. А поскольку панели необходимо поднимать на место с помощью крана, их вес в зависимости от грузоподъемности крана является еще одним ограничивающим фактором, и для этой цели кран должен иметь запас прочности три к одному. Но панели не обязательно доставлять на объект грузовиком, так что это не ограничение по размеру.

Производство и физические свойства

Фундамент и плита перекрытия (или отливка) должны быть подготовлены к укладке бетона. Опалубка обычно изготавливается из пиломатериалов, но может быть многоразовой из пластмассы или металла.Армирование — это обычная сталь, используемая в других бетонных работах. Подъемные вставки, сварные пластины и другое оборудование называются «закладными» и размещаются перед бетоном. Бондразрывы используются для покрытия отливки для облегчения подъема панелей. Если подъемный кран будет располагаться на части плиты, возможно, потребуется увеличить ее толщину больше, чем в противном случае потребовалось бы для здания.

Бетон обычно заказывают у производителя товарных смесей. Смеси могут быть определены как имеющие высокую прочность или раннюю прочность, чтобы удовлетворить потребности проекта.Бетон можно укладывать прямо из желоба грузовика или с помощью насоса для более точной укладки. Он уплотняется, обрабатывается шпателем и затвердевает.

Затирка бетона на откидной панели.

Нанесение отвердителя на откидную бетонную панель.

Наклон вверх не предусмотрен, так как панели заливаются, поэтому могут применяться процедуры бетонирования в холодную погоду.К счастью, цельнолитую отливку от перепадов температур довольно легко защитить.

Установка, подключение и отделка

После заливки лицевой стороной вниз панели устанавливаются путем снятия плиты и прикрепления к фундаменту / плите. Комбинация дюбелей из плиты и крепления к смежным панелям обеспечивает конструктивную целостность здания. Во время размещения панели скрепляются до тех пор, пока все они не будут соединены вместе, чтобы образовать стены. Планируются операции по подъему панелей в быстрой последовательности.Соединения, которые были залиты в бетон, позволяют сваривать панели. Затем вертикальные швы заполняются герметиками.

Стеновая панель lt-up крепится к бетонной плите.

Откидные стеновые панели фиксируются в нужном положении.

Архитектурная обработка бетона придает панелям богатство деталей и внешний вид.Ржавчина и откосы могут создавать видимость панелей различного размера и теневых линий. Отделка и конфигурации панелей претерпели значительные изменения в последние годы, поэтому эти панели обладают такой же универсальностью, как и другие системы бетонных стен. Обычная отделка включает цветной бетон, необработанный заполнитель и текстуры формовочного вкладыша. Облицовочные смеси могут сделать любую из этих отделок более экономичной, если поместить специальную бетонную смесь на внешние 1 или 2 дюйма поверхности панели. Доступны специальные вставки для создания тонких поверхностей из кирпича или тонких блоков.В качестве альтернативы поверхность может быть окрашена или оштукатурена с текстурой штукатурки, хотя такая отделка может потребовать периодического ухода, ненужного при заливке.

Методы литья достаточно развиты, поэтому теперь можно отливать изогнутые панели. Для этого необходимо построить специальную опалубку на земле, но после первой заливки ее при необходимости можно сложить как плоские панели.

Устойчивое развитие и энергия

Откидные панели могут быть монолитными бетонными, а могут быть конструкциями типа «сэндвич».Изоляция может быть встроена в откидную панель, чтобы обеспечить энергоэффективную конструкцию с твердыми поверхностями наружных стен. Обычно используют экструдированный полистирол толщиной от 2 до 6 дюймов. Стены могут иметь значение R от около 2 для неизолированных панелей до около 32 для стен, содержащих более толстые слои изоляции. Поскольку строительные нормы требуют большей энергоэффективности, толщина изоляции увеличивается. Но, как и все бетонные системы, подъемно-поворотный механизм обеспечивает высокую тепловую массу и воздухонепроницаемую конструкцию. Панелирование также означает меньшее количество стыков и меньшее проникновение воздуха.

Энергетические характеристики — важная составляющая экологичности подъемно-транспортного средства, но это еще не все, что он может предложить. Все другие аспекты устойчивости, которые применимы к любому типу бетонной конструкции, относятся к откинувшейся вверх. В откидном бетоне есть потенциал для вторичного использования. Стеновые панели можно снести, а бетон переработать по окончании срока службы. Он местного производства. Это прочный и неприхотливый в уходе.

Строительные нормы и правила

Подъемно-поворотная конструкция подпадает под действие Международного строительного кодекса (IBC) в железобетонной секции.Обычно он разрабатывается лицензированным инженером-строителем. Наклон вверх не рассматривается в Международном жилом коде (IRC). Ассоциация Tilt-Up Concrete Association (TCA) предлагает руководства по проектированию. ACI публикует «Руководство по проектированию подъемно-откидных бетонных панелей », ACI 551.2R-10, в котором представлена ​​информация, позволяющая расширить возможности ACI 318, чтобы сделать его более конкретным для подъемно-поворотных конструкций.

Сравнительная стоимость

Откидная конструкция традиционно была наиболее экономичной для панелей больших размеров и больших зданий.Достижения и планирование сделали его более конкурентоспособным по стоимости даже для зданий меньшего размера в диапазоне 5000 квадратных футов. Для односемейного жилья это может быть экономичным для застройки подразделения, когда одновременно строятся несколько зданий. Как повторение, так и экономия на масштабе могут сэкономить время и деньги.

Проекты Tilt-Up

Маленькие конверты, большие результаты: односемейные и откидные

Откидная конструкция приобрела популярность для больших простых зданий, потому что этот метод является быстрым и эффективным, преимущества, которые важны на этом рынке.Тем не менее, при подходящих условиях подъемный механизм также может быть эффективным методом строительства даже для односемейных домов самого скромного размера. Помогло наличие кранов меньшего размера. Также важно правильно использовать подъемное оборудование, как это может быть сделано в запланированных сообществах, где многие здания строятся последовательно. Описанный здесь прототип дома основан на утепленных откидных стеновых и потолочных панелях.

По размеру, масштабу и дизайну дом скромен. В его дизайне почти чувствуется юго-запад, но легко представить, как его внешний вид можно адаптировать к широкому спектру архитектурных стилей, от традиционного до современного.Площадь пола составляет 1754 квадратных фута, а простой прямоугольный план подходит для плоских секций стен. Всего 30 панелей потребовалось для создания всей конструкции, включая небольшой передний двор, который добавляет интерес к планировке. Панели различаются по размеру: самая высокая — 18 футов, самая широкая — 34 фута 8 дюймов, а самая большая — 324 квадратных фута. Максимальный вес панели составляет 32 450 фунтов.

Пол дома монолитный, который, как обычно при откидном строительстве, служит станиной для стеновых панелей.Стеновые и кровельные элементы представляют собой конструкцию типа «сэндвич» со встроенной изоляцией. Две бетонные облицовочные панели соединены пенопластом с помощью соединителей из волоконных композитов. Это обеспечивает отличные энергетические характеристики, поскольку нет теплового моста. Конструкция прочная, прочная и устойчива ко всем видам сил, включая сильный ветер и удары, что обеспечивает исключительную долговечность. Внешняя отделка может быть как простой, как, например, легкая лепнина, так и более детальной. Общие декоративные техники для наклона вверх включают текстуры и цвета лайнера с помощью красок, пятен или интегральных цветов.

Хотя этот дом можно было построить где угодно, он находится в Иордании, стране, где для военных и государственных учреждений требуется современное жилье. Модель привлекла там большое внимание высокопоставленных государственных чиновников. В качестве еще одного свидетельства простоты этого метода строительства подрядчик смог преодолеть сложный языковой барьер, обеспечив надзор и обучение местных полуквалифицированных плотников и рабочих, обучая их укладывать и отделывать бетон, формировать и размещать панели, а также установить и закрепить конечный продукт.

Доступная эстетика воссоздает историческое очарование

В Shelmore Village владельцу нужно было создать дизайн с гибкими жилыми / рабочими пространствами — функциональными для жилых помещений, офиса, а также для розничной торговли. Используя всего три планировки, дизайнеры создали планы этажей первого уровня с привлекательными фасадами магазинов и двумя этажами комфортабельных частных жилых домов наверху — всего 41 квартира. Но владелец также хотел, чтобы каждая квартира имела ощущение индивидуальности, как в деловом районе Чарльстона в центре города.

Хотя владелец не имел опыта работы с подъемным механизмом, он выбрал его с помощью подрядчика по проектированию / строительству как экономичный способ строительства доступного жилья. Помимо конструктивного решения, подъемный бетон также предлагал превосходные характеристики сопротивления сейсмической нагрузке, противопожарные перегородки между блоками, которые также действуют как звуковые барьеры, высокую прочность и низкие эксплуатационные расходы, а также скорость доставки.

Ограниченный участок площадью менее четырех акров требовал значительного количества штабелируемых панелей — некоторые до пяти высотой — и детального согласования формования, заливки, отделки и монтажа.Самая высокая панель составляет 34 фута-1 дюйм. высокий и самый большой 715 квадратных футов. Из-за количества и размера панелей, необходимых для производства девяти трехэтажных зданий, строительство было организовано для подъема некоторых панелей и последующего повторного использования литых плит.

Tilt-up приобрел популярность в больших, простых зданиях, в так называемых розничных магазинах с большой коробкой, которые часто имеют квадратные или прямоугольные следы и не имеют большого количества украшений. Но достижения в области подъемно-поворотного устройства теперь позволяют создавать более сложные компоновки зданий и улучшенные архитектурные решения, которые повышают его привлекательность для более широкого круга приложений.Многие из этих техник использовались в деревне Шелмор. В данном случае перед дизайнерами была поставлена ​​задача воссоздать очарование исторического Чарльстона, сохранив эстетически приятную природу архитектуры конца 17-го и начала 18-го веков, но по доступной цене. Они достигли этого за счет изменения линии крыши и отступов зданий, материалов экстерьера и других внешних элементов отделки и акцентов. Комбинация кирпича, вагонки, штукатурки и систем внешней изолированной отделки (EIFS) и бетонных фасадов придает уличный вид разнообразию, который маскирует лежащие под ними твердые бетонные стены.Другие детали отделки включают в себя входные навесы, кованые перила и отделку, ставни и круглые оконные проемы, а также многоуровневые подъезды. Результатом является доступное жилье с деталями, которые можно найти в изысканных домах на заказ.

(PDF) Сборные легкие стены из пенобетона, конструктивная система для малоэтажных жилых домов

Легкий пенобетон, в отличие от обычного бетона, имеет низкую плотность,
бетон с нулевым содержанием грубых заполнителей. Применение пенобетона ранее
был неконструкционным и использовался эстетичный, термический, огнестойкий и заполнитель пустот
характеристики.Эти существующие свойства делают легкий пенобетон идеальным зданием.
материал для строительства жилых домов, таким образом, материал сейчас разрабатывается
в строительный материал для структурного применения.

Предыдущие исследования в области структурного использования легкого пенобетона были сосредоточены на конкретных свойствах материала и его долговечности. Это исследование, внесенное в исследовательское подразделение Центра развития устойчивой инфраструктуры, направлено на то, чтобы внести свой вклад
к разработке системы зданий из легкого армированного пенобетона в качестве
заменяет неармированную несущую кладку в малоэтажных (от одного до четырех
этажного) жилых домов в Юго-Западном мысе ЮАР.Этот регион
Южная Африка является регионом с сейсмичностью от низкой до умеренной, поэтому предлагаемая система зданий должна быть сейсмически достаточной.

Опытный образец здания из легкого пенобетона является основой исследования, из которого
сегмент стены испытывается. Дополнительной особенностью строительной системы является включение
сборного строительства; где несущие стеновые панели будут производиться на заводе и
перевезен на объект для быстрого, но качественного строительства. Для выбранной стеновой панели
верхние и нижние соединения (фундамент и плита перекрытия) заделаны дюбельными соединениями в
соответствие международным стандартам сборного железобетона для сейсмических регионов.Изготовленные на заказ механические соединительные коробки используются для вертикальных соединений между смежными стеновыми панелями. Эти вертикальные соединения размещаются в центре сегмента стены, чтобы можно было проводить испытания в плоскости двух соседних стен.

Испытания этих стеновых панелей проводятся в соответствии с соединением сборного железобетона.
руководства по испытаниям, поскольку предполагается, что концентрации напряжений в соединениях будут
определить сейсмостойкость стен. Три различных физических испытания проводятся на стеновых панелях в масштабе 1: 3 с одной стороны прототипа здания.Первая и третья стены испытываются с помощью монотонной тянущей нагрузки. Эти образцы стен различаются по степени усиления залитых дюбелей в их горизонтальных соединениях. Вторая стена испытывается посредством квазистатического циклического нагружения, чтобы определить характеристики рассеивания энергии сборной системы здания из легкого пенобетона. Целью этих испытаний является определение поведения смещения и поведения сборных железобетонных соединений при сейсмической нагрузке.

Созданы модель конечного материала из легкого пенобетона и моделирование методом конечных элементов обоих испытаний на вытягивание.Проведено дальнейшее исследование чувствительности для установления зависимости расчетной реакции системы ограждений на изменения трения на стыке стыков, прочности на растяжение и сжатие, а также размера соединительных дюбелей. Целью этого численного анализа является предоставление информации о механизмах разрушения в сборке сборных стен.

Результаты физических испытаний показывают, что способность стены выдерживать поперечный
на тяговое усилие существенно влияет изменение степени усиления дюбелей
пересечение горизонтальных соединений.Наблюдаемое рассеяние энергии при циклических испытаниях
указывает на то, что количество и размещение соединительного дюбеля также влияют на смещение
механизмы стены и наблюдаемое растрескивание указывает на нормальное поведение в плоскости
стеновая система.

Результаты испытаний методом конечных элементов выделяют отдельные области нелинейного смещения.
перед окончательным отказом от скольжения в горизонтальных соединениях. Исследование нормализации показывает
что эти области присутствуют в одном и том же относительном смещении в пределах обоих физических
тесты и численное моделирование.Предложена аналитическая модель, ориентированная на результаты исследования чувствительности.
проведено, что подчеркивает значительный эффект изменения трения и диаметра дюбеля.
имеют максимальную пропускную способность горизонтальных соединений. Эти свойства видны
допускают вязкое разрушение при больших перемещениях. Эта аналитическая модель показывает, что сдвиг
Емкость этих соединений определяет сопротивление сборных стен боковым усилиям.
Сделан вывод, что сборная конструкция для предлагаемой системы здания успешно рассеивает энергию, при условии, что при размещении соединений принимаются меры для предотвращения хрупкого разрушения.Далее делается вывод, что армированные легкие стены из пенобетона дают пластичный и предсказуемый отклик, не выдерживая боковых нагрузок, превышающих сейсмические требования в интересующей области.

Рисунки — загружены Тревором Данном Автор содержания

Все рисунки в этой области были загружены Тревором Данном

Контент может быть защищен авторским правом.

Циклические боковые испытания сборных железобетонных Т-образных стен в быстром малоэтажном строительстве

ACI Structural Journal Январь / февраль 2016 г.

Newswise — Мы часто предпочитаем простейшее решение для лучшего контроля качества.В этом аспекте сборный железобетон (ПК) представляет собой один из самых простых и быстрых методов строительства многоэтажных зданий, требующих минимального обслуживания. В регионах с высокой сейсмичностью, таких как Калифорния, всегда возникают вопросы сейсмического риска, и конструкции ПК должны демонстрировать свою способность обеспечивать структурную целостность между соединенными сборными железобетонными элементами при максимально вероятном землетрясении.

Сопротивление боковой нагрузке стен из сборного железобетона (ПК) достигается за счет имитации монолитной деталировки, использования стыков втулки для раствора для продольной арматуры, применения техники последующего натяжения и / или механического соединения с кровельные и напольные диафрагмы.Инновационная соединительная система из стальных пластин, разработанная исследовательской группой Сеульского национального университета в Корее для соединения между стеновыми панелями из сборного железобетона (ПК) или фундаментом, может не нуждаться в любом из вышеперечисленных методов. Даже безусадочный раствор, который необходим при применении техники последующего натяжения или сращивания арматуры, не требуется для этой соединительной системы из стальных пластин (хотя вы можете нанести раствор после болтов для защиты от огня и коррозии, а также для заполнения зазор).

Ожидается, что такая соединительная система повысит конструктивность и устойчивость к боковым нагрузкам, и идеально подходит для малоэтажных зданий с быстрым подъемом, таких как откидные конструкции, в зонах с низкой и высокой сейсмичностью.Система состоит из двух болтовых С-образных соединителей, арматурных стержней с торцевой резьбой, шестигранных гаек и шайб / регулировочных шайб. Детали соединителей болтового типа показаны на рис. 1–3. «Две части С-образных соединителей с горизонтальными и вертикальными пазами обеспечат большую устойчивость к вариациям конструкции», — сказал Сунг-Гул Хонг, профессор Сеульского национального университета. «Несмотря на то, что эта система никогда не применялась в реальном мире, мы считаем, что разработанная система значительно повысит эффективность строительства без ущерба для ее устойчивости к боковым нагрузкам», — сказал Хонг.

С-образные соединители предназначены для передачи сил растяжения и сжатия в основной изгибной арматуре и / или бетоне. Максимальная концентрация напряжений находится на границе раздела между двумя стальными пластинами, поскольку путь силы меняет направление. Детали в этом критическом месте могут быть уточнены перед его применением. Полая часть в конце стены необходима для облегчения сборки панелей ПК с помощью болтов. Здесь есть два варианта: каждый элемент панели может быть предварительно натянут, или панели могут быть изготовлены без процесса предварительного напряжения.

По словам Томаса Канга, профессора Сеульского национального университета, «наличие срезной шпонки является ключом к эффективной передаче поперечных сил сдвига между стеновыми панелями и между стеновой панелью и фундаментом, что делает доступным вариант из чистого сухого сборного железобетона. . » Для проверки сейсмической устойчивости разработанного чистого сухого соединения были проведены экспериментальные исследования на факультете архитектуры и архитектурной инженерии Сеульского национального университета. Размер и толщина соединителей из стальных пластин С-образной формы были определены таким образом, чтобы пластина не деформировалась до образования изгибных стержней в стене.Кроме того, на этапе проектирования проверялась прочность на изгиб каждой стальной пластины. «Тот факт, что сейсмические характеристики системы были подтверждены, очень важен и облегчит инженерам понимание возможностей этой системы», — убедительно сказал Канг. «Мы использовали монолитные соединения для горизонтального соединения между фланцами и элементами стенки Т-образных перегородок, но мы думаем, что они также могут быть заменены соединителями из стальных пластин. Два С-образных разъема потенциально могут быть объединены в один коробчатый разъем, если они правильно спроектированы.”

Исследование можно найти в статье« Циклические боковые испытания Т-образных стен из сборного железобетона в быстром малоэтажном строительстве », опубликованной ACI Structural Journal.

Для получения дополнительной информации обращайтесь:
Джули Уэбб
Специалист по маркетинговым коммуникациям
248-848-3148
[электронная почта защищена]

Всегда продвигается — Американский институт бетона является ведущим органом и ресурсом во всем мире по разработке и распространению основанные на консенсусе стандарты и технические ресурсы, образовательные программы и сертификаты для частных лиц и организаций, занимающихся проектированием, строительством и материалами из бетона, которые разделяют стремление к наилучшему использованию бетона.Инклюзивная, индивидуальная структура, управляемая участниками, и ценные, рентабельные преимущества привели к созданию важной организации, которая приглашает к сотрудничеству и приветствует всех конкретных профессионалов, которые хотят стать частью уважаемой, связанной социальной группы, которая предоставляет возможность для профессионального роста, налаживания контактов. и наслаждение. Для получения дополнительной информации посетите www.concrete.org.

Центр CE — Библиотека Центра CE

Все курсыТемаСтатьиМультимедиаВебинарыНано кредитыСпонсорыПодкасты

25 августа 2021 г., 14:00 EDT

, 26 августа 2021 г., 14:00 EDT

Эти проекты используют доступ к природе как часть процесса исцеления

31 августа 2021 г., 14:00 EDT

7 сентября 2021 г., 14:00 EDT

Модернизация салона кабины в крупных проектах

9 сентября 2021 г., 14:00 EDT

9 сентября 2021 г., 14:00 EDT

14 сентября 2021 г., 14:00 EDT

15 сентября 2021 г., 14:00 EDT

16 сентября 2021 г., 14:00 EDT

22 сентября 2021 г., 11:00 EDT

23 сентября 2021 г., 14:00 EDT

30 сентября 2021 г., 14:00 EDT

Как кожа и отделка делают металлические композитные материалы визуально и функционально прочными

5 октября 2021 г., 14:00 EDT

Освоение физического движения элементов Земли вокруг искусственной среды

Снижение стоимости конструкции с откидным верхом

Конструкция с откидыванием вверх (иногда называемая конструкцией с наклонной плитой, бетонной конструкцией с откидным верхом или конструкцией с наклонной стенкой) — это процесс использования откидных бетонных стен в качестве основной конструкции здания, обычно коммерческого здания.Подъемно-наклонная конструкция имеет много преимуществ для определенных типов строительных проектов, и, по некоторым оценкам, в США за год возводится более 650 миллионов квадратных футов откидных строительных зданий!

Пример строительной площадки с откидным верхом — любезно предоставлено Ассоциацией бетона с откидным верхом

В этой статье мы рассмотрим основы подъемно-поворотной конструкции и представим новую технологию для снижения затрат на подъемно-поворотную конструкцию и сокращения сроков строительства подъемно-поворотной конструкции.

Что такое откидная конструкция?

Подъемно-наклонная конструкция описывает метод строительства здания, при котором на строительной площадке сооружаются рамы для заливки бетонных стеновых панелей на землю, так же, как при формировании фундамента из бетонных плит. Однако в этом случае принимаются меры, позволяющие затем «наклонить» залитую бетонную плиту вверх, чтобы превратить эту плиту в бетонную стену. Эти бетонные стены обычно образуют внешнюю часть здания и являются основной структурой здания вместо других типов стен и строительных конструкций, таких как сборная конструкционная сталь.

Стены заливаются на строительной площадке, как правило, с использованием габаритных деревянных опалубок, арматуры и бетона. Дополнительные материалы могут быть применены или встроены в стену по мере ее изготовления при укладке на землю, включая кирпичные фасады, изоляционные материалы, любые покрытия, точки подъема стен и точки соединения бетона со сталью, такие как закладные плиты. Формы позволяют формировать стену с ключевыми архитектурными деталями, такими как окна и двери.

Когда стены затвердевают в формах на земле, их поднимают вверх, обычно с помощью крана, поскольку они могут быть довольно большими и тяжелыми.Затем откидные стены перемещаются на место и устанавливаются на фундаментные опоры. Каждая панель закрепляется после того, как она будет перемещена на место, пока стены не будут соединены вместе, чтобы создать отдельно стоящую конструкцию.

Укладка вертикальных строительных стен — любезно предоставлено Tilt-up Concrete Association

Если вы когда-либо были на строительной площадке дома или небольшого здания, вы, вероятно, видели суть «откидной конструкции», когда стена с гвоздями строится ровно на полу, а затем горстка рабочих наклоняет ее вверх. и удерживайте его, пока он прибит на место.Хотя механика в чем-то такая же, в профессиональных кругах «конструкция с подъемом вверх» обычно относится к методу заливки бетона, описанному выше.

Вы окружены откидывающимися вверх строениями! Любое относительно невысокое здание, которое требует только поддержки крыши и часто имеет большое открытое внутреннее пространство, потенциально является идеальным кандидатом для строительства с откидным верхом.

Типовой проект строительства подъемно-транспортного средства — любезно предоставлен Ассоциацией производителей подъемно-транспортных средств

Многие крупные розничные предприятия и магазины, склады и распределительные центры, основанные на членстве, используют откидные строительные стены с внутренними стальными колоннами, чтобы поддерживать крышу, охватывающую очень большой квадратный фут внутри.

В этом видео ниже рассматриваются все ключевые элементы, позволяющие понять методы строительства с наклоном вверх — любезно предоставлено Civil Engineering.

Откидная монтажная рама из видео выше, на котором показаны все закладные плиты

Планирование подъемно-откидной конструкции

Конструкция

Tilt-Up требует предусмотрительности, чтобы гарантировать, что литые стеновые панели точно отражают проектные цели здания.Подрядчики также должны хорошо продумать строительную площадку, чтобы подготовиться к заливке панелей. Заливка откидных строительных стеновых панелей требует ровной, ровной и гладкой поверхности, достаточно большой для создания каждой из стеновых панелей. Это может быть залитая плита самого здания, или для этого может потребоваться временная плита или поверхность, подходящая для формирования стен, пока продолжается проект.

Разделяющие агенты определенного типа используются, чтобы гарантировать, что стена, которую нужно наклонить, не прилегает к поверхности, на которой она формируется, и особое внимание уделяется нанесению разделительных агентов или поверхностных материалов, таких как облицовка, для обеспечения целостности стены. удар при наклоне стены.

Преимущества откидной конструкции

Откидная конструкция при правильном применении может быть невероятно рентабельной.

Для высотных зданий необходим стальной каркас, способный выдерживать расчетные нагрузки здания. Однако для зданий, которые не такие высокие, и которые, возможно, должны нести только крышу и связанные с этим нагрузки на крышу, можно спроектировать конструкцию, для которой не требуется конструкционный стальной каркас. Это может значительно сэкономить средства от снижения затрат на проектирование конструкций до приобретения и изготовления системы стального каркаса.

Товарный бетон, арматура и габаритные пиломатериалы местного производства обычно более доступны, чем изготовление и отправка на строительную площадку стальных балок или сложных строительных деталей.

Из-за способности создавать большие площади в квадратных футах под относительно низкой крышей, откидная конструкция часто становится все более привлекательной, чем больше площадь проектируемого здания в квадратных футах.

Откидная конструкция может иметь преимущество в скорости.

Стены могут занять несколько дней на месте, чтобы отремонтировать, но это все равно меньше времени, чем обычно требуется для проекта стальных конструкций, и поскольку стена / структурная система может подниматься быстрее, крыша может быть на месте быстрее, а конструкция может перемещаться внутрь быстрее, что обычно ускоряет всю работу.

Существует некоторое сокращение рисков, связанных с графиком строительства, с помощью технологии Tilt-up Construction.

Поскольку существует меньше элементов критического пути (например, стальных балок), которые потенциально могут замедлить работу, а подрядчик на площадке имеет большую степень контроля над темпами строительства стен, риск временного графика уменьшается.

Откидная конструкция по-прежнему может быть энергоэффективной.

Железобетон — лучший теплоизолятор, чем конструкционная сталь, поэтому откидная конструкция может иметь некоторые энергетические преимущества по сравнению с конструкцией.здания со стальным каркасом, и за счет применения дополнительных систем теплоизоляции здания с откидной конструкцией могут быть такими же энергоэффективными, как и другие типы коммерческих зданий. Даже соединение сталь-бетон, о котором мы подробнее поговорим ниже, можно термически разрушить с помощью наших инновационных технологий термического разрыва соединения стали-бетон.

Разница между подъемно-откидной конструкцией и сборной конструкцией.

Откидную конструкцию часто путают с сборной конструкцией.Разница в том, что сборные железобетонные панели заливаются на удаленном от объекта объекте. Сборное железобетонное строительство имеет некоторые из тех же преимуществ по стоимости и срокам, что и подъемно-поворотное строительство, в том смысле, что внутренний стальной каркас может не понадобиться, однако сборное строительство чаще используется, когда панели имеют сложную форму, требующую некоторых расширенных возможностей формования бетона, или когда есть на объекте просто не хватает места для создания откидных стен. Конструкция с откидным верхом используется, когда геометрия стен относительно проста.

Tilt-up Construction можно сделать еще более рентабельным, с еще меньшими рисками, связанными со сроками, и сделать ее более безопасной с помощью EM-BOLT!

Несмотря на то, что конструкция откидной стены может быть очень конкурентоспособной по стоимости и хорошо подходит как решение для проектов в сжатые сроки, этот метод можно еще улучшить!

В конструкции с откидным верхом стены наклоняются вверх и временно удерживаются на месте до тех пор, пока не будет использована какая-либо система соединения, чтобы зафиксировать их на месте.Система соединения обычно представляет собой конструкционные стальные балки, которые охватывают здание, соединяют стены друг с другом по пролету пола и, в конечном итоге, поддерживают крышу. Соединение стали с бетоном для создания конструктивной системы перекрытия крыши обычно включает сварную закладную плиту.

Однако для проектов с откидными стенами, поскольку требуется гораздо меньше работы со стальными конструкциями, на месте обычно меньше сварочных ресурсов. Это означает, что для выполнения соединения сталь-бетон в типичном строительном проекте с откидным верхом необходимо привлечь сертифицированных сварщиков и квалифицированных инспекторов только для этой одной операции — приваривания стальной закладной пластины к стальной конструкционной балке и проведение последующих проверок.

Как мы смогли продемонстрировать в строительных проектах из конструкционной стали, соединение стали с бетоном может быть выполнено с использованием запатентованных болтовых закладных пластин EM-BOLT, что снижает трудозатраты на строительство и высвобождает сварочные ресурсы для других, более важных работы, снижает затраты и риски на инспекцию, а также сокращает сроки строительства. Несмотря на то, что полностью исключить сварку невозможно, использование закладных пластин EM-BOLT может значительно сократить объем сварки, необходимый для конструкции с откидным верхом.

Использование болтовых закладных пластин EM-BOLT, которые отливаются на месте, как стандартные сварные закладные пластины, сокращает время технологического цикла для каждой откидной стеновой панели.

EM-BOLT Пластина для крепления на болтах

Отсутствие приваривания стальной балки к бетонной закладной плите и замена этого процесса болтовым соединением дает многочисленные преимущества, особенно для строительных проектов с откидным верхом.

Зачем сваривать, если можно скрепить болтами и сэкономить время и деньги?

Крепить уголки к пластинам с помощью болтов намного быстрее и проще, чем при помощи сварки. Это может означать, что стеновую панель можно будет поднять быстрее, так как уголки можно установить быстрее, без использования сварочных средств. Кроме того, если погода мешает сварке, эта операция откладывается. Сварка требует бережного хранения одобренных материалов на месте, а сварка создает визуальную опасность для ближайших рабочих и потенциальную опасность возгорания, с которой необходимо бороться.Монтажные пластины с болтовым креплением EM-BOLT устраняют эти риски и возможные задержки.

Соединение на болтах между сталью и бетоном может быть создано с использованием обычных строительных работ, что снижает общие затраты на проект и ускоряет строительство.

Сварные строительные швы требуют специальных навыков контроля, и часто некоторый процент сварных швов необходимо проверять в непосредственной близости, что еще больше увеличивает расходы, поскольку вам нужно, чтобы инспектор физически приблизился к некоторому проценту сварных швов.Доступны многочисленные системы контроля качества болтовых соединений, которые можно визуально проверить на расстоянии.

Типовой метод проверки болтовых соединений

Поскольку движущими силами для откидной конструкции как методологии проектирования и строительства часто являются затраты и время, имеет смысл только дополнительно сократить затраты и сроки, используя передовую технологию закладных пластин с болтовым креплением!

EM-BOLT предлагает решения для закладных пластин с болтовым креплением, специально разработанные для ускорения и удешевления строительных работ с откидным верхом.

Эти решения сводят к минимуму сварку соединений сталь-бетон, что ускоряет выполнение работ и сводит к минимуму рабочие риски.

Вы можете узнать больше о конструкции с откидным верхом на сайте Tilt-Up Concrete Association.

Вы можете увидеть прямое сравнение стоимости сварной закладной пластины и стоимости установленной закладной пластины на болтах EM-BOLT здесь.

Подробнее о закладной пластине EM-BOLT с болтовым креплением можно узнать здесь.

Готовы узнать больше о наших инновационных конструктивных решениях, позволяющих экономить деньги?

Или возьмите гида!

Если вы используете продукцию EM-BOLT, мы бесплатно сделаем все расчеты и детальное проектирование!

Циклическое поведение сэндвич-бетонных стен из пенополистирола (EPS)

Стены из сборного железобетона все чаще используются из-за быстрой потребности в недорогих сборных домах, особенно по мере того, как стоимость традиционного строительства продолжает расти, а также, особенно на поврежденных участках из-за стихийные бедствия, когда потребность в большом количестве быстровозводимых и экономичных домов имеет первостепенное значение.Однако характеристики сборных стен при боковой нагрузке, такой как землетрясение или сильный ветер, до сих пор не изучены полностью из-за различных типов арматуры и соединений. Кроме того, массивные и прочные элементы стен также увеличивают общий вес здания и, следовательно, значительно увеличивают воздействие землетрясения. Поэтому сборные железобетонные стены из полистирола, которые предлагают легкий вес и простую установку, стали предметом исследования. Проведены лабораторные испытания двух образцов железобетонных стен с использованием панели из пенополистирола и арматуры из проволочной сетки.Квазистатическая нагрузка в виде циклических испытаний с контролируемым смещением проводилась до достижения пиковой нагрузки. На каждом шаге дискретного нагружения измерялись характеристики поперечной нагрузки и прогиба, распространение трещин и механизм обрушения, которые затем сравнивались с теоретическим анализом. Результаты показали, что сборные железобетонные стены из полистирола обладают значительными сейсмическими характеристиками для сейсмической зоны от низкой до средней, достигая сноса до 1% при падении пиковой нагрузки на 20%. Однако этого может быть недостаточно для регионов с высокой сейсмичностью, в которых тип стены из двух панелей может быть более подходящим.

1. Введение

Высокие здания, особенно с неровностями, склонны к плохому поведению и разрушению при воздействии боковых нагрузок, таких как землетрясение или сильный ветер. Чтобы преодолеть эту проблему, обычно предпочтительнее использовать стены, работающие на сдвиг, чтобы значительно увеличить поперечную прочность конструкций. Однако добавленные массивные и твердые стены, работающие на сдвиг, приводят к увеличению веса здания и, следовательно, к сдвигу основания из-за возбуждения землетрясения, что может снизить эффективность использования стены сдвига в конструкциях.Необходимы усилия по уменьшению веса стенок, работающих на сдвиг, без потери прочности в поперечном направлении.

Было проведено множество исследований, посвященных изучению стен из легкого бетона, работающего на сдвиг, с использованием различных методов уменьшения веса элемента, таких как использование легких заполнителей, применение системы пористого бетона или вставка легких панелей в стену. Mousavi et al. [1] изучали эффективность стены системы JK, состоящей из пенополистирола (раствор с шариками пенополистирола в качестве мелких заполнителей) и гальванизированной стальной арматуры, в выдерживании поперечной нагрузки.Было отмечено, что стены JK обладают высокой пластичностью, но все же требуют дальнейшего наблюдения для применения в высоких и средних зданиях. Ичжоу [2] исследовал, что использование пустой породы в качестве заполнителя в бетонной стене сдвига обеспечивает большее рассеивание энергии по сравнению с обычной бетонной стеной сдвига. Кроме того, Hejin et.al. [3] сфокусировались на ясеневом керамзите в качестве альтернативы стенам из легкого заполнителя, работающим на сдвиг, которые давали характеристики прогиба и обрушения, аналогичные характеристикам обычных бетонных стен, тогда как Чай и Андерсон [4] обнаружили, что характеристики бетонных стеновых панелей с использованием перфорированных легких материалов заполнитель в малоэтажных зданиях, подверженных боковым нагрузкам, был в целом удовлетворительным.Cavaleri et al. [5] исследовали пемзу в сравнении с керамзитом и обычным камнем в качестве заполнителей в бетонной стене сдвига, что показало преимущество использования пемзы.

С другой стороны, снижение веса конструктивных элементов может быть достигнуто с помощью сэндвич-системы, вставив легкую панель внутрь бетонного элемента. Эта система панелей обычно также применяется для изоляции. Легкая стеновая система, исследуемая в этой статье, была сосредоточена на использовании панели из пенополистирола в качестве наполнителя и оцинкованной проволочной сетки для арматурного стержня, как показано на рисунке 1.

2. Методология исследования

Образцы были спроектированы как несущие стены, составляющие малоэтажные здания, которые обычно встречались в жилых или школьных сборных домах. В приземистых стенах обычно преобладают характеристики сдвига, которые сопоставимо отличаются от высоких стен, обычно встречающихся в высотных зданиях. Бетонные высокие стены хорошо изучены и понятны [7–10], тогда как бетонные приземистые стены исследуются все чаще [11–14].Тем не менее, исследования инноваций в области приземистых стен из сэндвич-панелей с панелями из пенополистирола только начинались. Предыдущие экспериментальные исследования Trombetti et al. [15] и Ricci et al. [16] показали, что приземистые бетонные сэндвич-стены были сопоставимы с обычными железобетонными стенами и могли выдерживать боковую нагрузку вплоть до сноса более 1,3%, тогда как Палермо и Тромбетти [17] всесторонне исследовали сэндвич-стены экспериментально и аналитически, и результаты показали, что Правильно спроектированные стены могут соответствовать требованиям к высоким сейсмическим характеристикам, предусмотренным кодексом.Тем не менее, общие характеристики многослойных железобетонных стен с более низким коэффициентом армирования стали (ниже минимальных требований) все еще требуют дальнейшего изучения и, следовательно, стали основным направлением этого исследования.

Проведены лабораторные испытания двух образцов многослойной железобетонной стены RCW4 и RCW8. На рисунке 2 показано типичное свойство стен. Все образцы имели высоту и ширину 90 см и 60 см соответственно (эквивалентное соотношение сторон 1,5). В стене RCW4 использовалась панель EPS толщиной 4 см по сравнению с панелью EPS толщиной 8 см, установленной в стене RCW8.Образцы были усилены проволочной сеткой ϕ, 2,5–75 мм с каждой стороны стены и стальной проволокой ϕ 3,0 мм для соединения обоих слоев сетки. Предел текучести и предел прочности стальной проволочной сетки на растяжение составляли 600 МПа и 680 МПа соответственно, как показано на Рисунке 3. Торкретбетон толщиной 35 мм был нанесен на каждую внешнюю сторону стен с прочностью бетона 15 МПа. Стены и фундамент были соединены с помощью анкерных стержней ϕ 10 мм с шагом 75 мм.


Процедура квазистатической циклической нагрузки была применена к концу образцов стенок, чтобы получить репрезентативные гистерезисные кривые поперечной нагрузки в зависимости от смещения (см. Рисунки 4 и 5) в соответствии с кодом ASTM E2126 [18].Для испытания на нагрузку использовался порядок с контролируемым сносом, включающий приращения сноса 0,042% до достижения 0,167% (что соответствует точке растрескивания), затем приращения сноса 0,16% до достижения сноса 0,66% (представляющего предел текучести), после чего следовала неупругая стадия. с шагом дрейфа 0,66%. Гистерезисное поведение стенок поддерживалось с использованием трех циклов нагружения при каждом коэффициенте дрейфа.


В процессе испытаний на каждой определенной стадии дискретного смещения регистрировались измерения LVDT, индикаторы часового типа и распространение трещин.Испытание прекратили, когда пиковая боковая прочность образца снизилась на 20% (отказ от боковой нагрузки).

3. Результаты экспериментальных испытаний

Гистерезисные кривые зависимости поперечного смещения нагрузки и структуры трещин всех образцов стенок представлены на рисунке 6. Оба образца RCW4 и RCW8 имели одинаковую пиковую боковую нагрузку около 25 кН с различными характеристиками поведения. RCW4 (панель из пенополистирола толщиной 40 мм) разработал более классический механизм изгиба, в то время как RCW8 (панель из пенополистирола толщиной 80 мм) преобладает с характеристиками проникновения из-за более тонкого бетонного покрытия фундамента стены.Как показано, образец RCW4 смог завершить все три цикла квазистатической циклической нагрузки при дрейфе 1,0%, а затем отказал в первом цикле нагрузки при дрейфе 1,33%, тогда как образец RCW8 показал более короткую максимальную дрейфовую способность с отказом на первый цикл боковой нагрузки при дрейфе 1,0%. Сравнение поперечной силы и дрейфа между экспериментальными результатами и теоретическими прогнозами представлено в таблице 1.

9045 9045 9045 9047 9048 9047 9047 9047 9047 lf


Прочность (кН) Дрейф (%)
F cr F y F u δ cr δ y

RCW4 Exp. 2,8 18 23,5 0,17 0,47 1,00 1,33
Тео. 4,0 16 23 0,1 0,42 0,75 нет данных

RCW8 Exp. 2,3 20 24,5 0,17 0,55 0,67 1,00
Тео. 4,3 18 23,5 0,1 0,43 0,8 н.а.

. Теоретические значения были взяты из анализа кривизны момента (только компонент изгиба).

Общая боковая деформация состоит из компонентов изгиба, сдвига и проникновения текучести, которые были определены с помощью индикатора часового типа и измерений LVDT и индикатора часового типа, как показано на рисунке 7.

Изгибное смещение в верхней части стенки на каждом и -сегменте LVDT было определено с помощью следующего уравнения (см. Рисунок 7 (a)): в то время как смещение упругой области в верхнем сегменте было оценено аналитически с учетом свойств сечения без трещин. следующим образом: где F = поперечная нагрузка; L i = длина сегмента; E c = модуль упругости бетона; и I = момент инерции без трещин.

Деформация сдвига Δ sh была спрогнозирована с использованием данных диагонального LVDT (см. Рисунок 7 (b)) следующим образом: где D = глубина стенки и δ s i = диагональное измерение LVDT.

Компонент прохождения текучести был измерен с использованием вертикального LVDT на первом уровне (см. Рисунок 7 (c)), предполагая наличие механизма качания внутри первой секции стены. Верхняя граница верхнего смещения колонны может быть вычислена из произведения вращения скольжения θ скольжения и высоты колонны, предполагая вращение твердого тела, следующим образом: где θ скольжение = вращение скольжения из растянутой стали =; и c = глубина нейтральной оси на границе основания колонны =.

Деформация стенок, включающая компоненты изгиба, сдвига и проникновения текучести для образцов RCW4 и RCW8, показана на рисунке 8. Деформация изгиба была наиболее доминирующей составляющей примерно 75% и 55% для образцов RCW4 и RCW8, соответственно, в то время как , деформация сдвига была наименее доминирующим компонентом деформации ниже 5% для обоих образцов RCW4 и RCW8. Интересно отметить, что деформация прохождения текучести RCW8 составила около 27% по сравнению с 21% от деформации образца RCW4, что можно отнести к меньшему бетонному покрытию откосного фундамента на RCW8 и, следовательно, меньшей прочности сцепления между стальным стержнем и бетоном у основания.

4. Модели с криволинейной опорой

Две простые модели (опорная и упрощенная) были разработаны для целей проектирования или базовой оценки поперечной грузоподъемности таких стен. Обе модели сэндвич-бетонных стен разработаны на основе модели, ранее разработанной авторами для слегка армированных бетонных стен [19].

4.1. Модель 1: подробный

Подробная модель кривой разработана на основе методологии проектирования на основе смещения для прогнозирования поведения поперечного смещения нагрузки (включает четыре стадии: растрескивание, текучесть, пиковая нагрузка и отказ от боковой нагрузки), как концептуально показано на рисунке 9.

(a) Точка A (растрескивание): поперечная прочность и снос при растрескивании рассчитываются следующим образом: где предел прочности при изгибе f t принимается равным.

(b) Точка B (текучесть): дрейф текучести рассчитывается с использованием второго эффективного момента площади следующим образом:

Модель Полея и Пристли [8] для эффективного момента инерции используется следующим образом. (I) Изгиб -доминантные стены: (ii) Стены с преобладанием сдвига: где P u = номинальная осевая нагрузка, A g = общая площадь поперечного сечения стен и t = толщина стены.

(c) Точка C (пиковая прочность): модель была разработана путем исследования кривизны в области пластического шарнира с использованием уравнения равновесия сил () с деформацией откола (), используемой в качестве предельного состояния для деформации бетона. Для малоэтажных зданий наличие осевой нагрузки силы тяжести достаточно мало, и, следовательно, для простоты площадь сжатой стали исключена из уравнения равновесия. Пиковая боковая нагрузка при изгибе F u и дрейф при разрушении бетона могут быть получены следующим образом: где и,,, A st = площадь растяжения стали и = деформация деформационного упрочнения стали.

Длину пластмассового шарнира L p можно оценить с помощью модели Полея и Пристли [8] следующим образом:

(d) Точка D (предельное смещение): соотношение поперечной нагрузки и смещения приземистых стен преобладает поведение сдвига; тем не менее, для слегка армированных приседающих стен поведение изгиба по-прежнему оказывает большое влияние на поведение поперечного смещения нагрузки. Необходим механизм разрушения, на который влияет снижение прочности на сдвиг; следовательно, модели разрушения боковой нагрузки, разработанные для слегка армированных бетонных колонн и стен [20, 21], модифицированы для этой модели из-за сходства поведения поперечной нагрузки-смещения между слегка армированными бетонными стенами и колоннами.

Прочность на сдвиг ( V u ) железобетонных стен состоит из следующих компонентов: прочности бетона ( V c ) и прочности стали ( V s ):

В этой модели бетон Для прочности на сдвиг используется формула, разработанная на основе основного предела прочности на разрыв авторами [22], в то время как прочность стали, предложенная Уэсли и Хашимото [23], используется следующим образом: где d — эффективная глубина стенок железобетонной конструкции, которую можно принять как 0.8 D , и, в котором,,, и.

В качестве примечания, для умеренных и тонких стен ( a > 1, и, следовательно, c v = 0), компонент прочности стали (уравнение (13)) можно переписать в виде общей формулы прочности на сдвиг:

Предел сноса может быть получен следующим образом: где где = пластичность сноса в начале уменьшения прочности на сдвиг.

4.2. Модель 2: Упрощенный

Упрощенная модель — это простая процедура для оценки поперечного сноса нагрузки слегка армированных бетонных стен.Эта модель состоит из трехлинейных стадий с каждым состоянием: растрескивание, текучесть и предел прочности, как показано на Рисунке 10.

(a) Точка A (растрескивание): поперечную прочность в точке растрескивания можно предсказать, приняв снос при растрескивании γ кр = 0,05%.

(b) Точка B (текучесть): предел текучести рассчитывается с использованием факторного предела текучести: тогда как соответствующий дрейф текучести ( γ y ) определяется с использованием наименьших значений из следующих альтернатив: (i) Приблизительный значение γ y = 0.2% –0,3% (ii) Применить I eff = 0,5 I g (см. [24])

(c) Точка C (окончательная): окончательный дрейф ( γ м ) можно рассчитать как сумму дрейфа текучести ( γ y ) и пластикового выколотки ( γ pl ) следующим образом (см. Рисунок 11):

Пластиковый выколоток может быть оценивается исходя из допущения максимально допустимой деформации стального стержня при единичной трещине у основания стены порядка ε s = 5.0% и более консервативный подход к Пристли и Полей [8] длина проникновения деформации l yp = 4400 ε y d b ≈ 15 d b . Следовательно, могут быть получены следующие модели (см. Рисунок 12).

Ширина трещины:

Пластический снос:

Зависимость поперечного сноса нагрузки между экспериментальными данными и предложенными моделями в значительной степени хорошо согласуется, как показано на рисунках 13 и 14.Безусловно, необходимы дополнительные данные для уточнения моделей, особенно для детальной модели, поскольку она была разработана с использованием полуэмпирического подхода. Тем не менее, что интересно, упрощенная модель с чисто аналитическим подходом показала лучший прогноз из-за преобладающих комбинаций поведения при изгибе и проникновении.


5. Заключение

Два образца легких многослойных бетонных стен были испытаны с целью исследования поведения поперечного смещения нагрузки и механизма обрушения.Образец RCW4 с более тонкой панелью из пенополистирола продемонстрировал более классическое поведение при изгибе с максимальной силой сноса около 1,3%, в то время как образец RCW8 смог достичь только 1,0% с доминирующим поведением при прохождении текучести из-за более тонкого бетонного покрытия наклонного фундамента. Однако испытания были остановлены при падении пиковой нагрузки на 20% вместо дальнейшего разрушения при разрушении под осевой нагрузкой. И, следовательно, результаты все еще можно считать удовлетворительными для регионов с низкой и средней сейсмичностью, но могут быть недостаточными для регионов с высокой сейсмичностью.

Были разработаны две модели, содержащие подробный и упрощенный подход для прогнозирования поведения смещения многослойной бетонной стены, подверженной боковой нагрузке. Экспериментальные данные и предлагаемые модели хорошо согласуются, в частности, упрощенная модель из-за преобладающего поведения изгиба и проникновения текучести.

Доступность данных

Данные, подтверждающие выводы этого исследования, доступны у соответствующего автора по разумному запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Устойчивое развитие | Бесплатный полнотекстовый | Разборное соединение для малоэтажных сборных железобетонных конструкций с DfD для обеспечения устойчивости строительства — предварительные испытания при циклических нагрузках

1. Введение Сборные железобетонные конструкции (PcaC)

играют значительную роль в современной строительной отрасли, которую можно просто разделить на три типы для строительных конструкций, т.е.например, настенные конструкции из ПКС, каркасные конструкции из ПКС и комбинированные каркасно-стеновые конструкции из ПКС [1,2,3,4]. Однако, независимо от типа, ключевой технологией конструкций PcaC является соединение между компонентами, обычно включая соединения колонна-стена, балка-стена, колонна-балка, стена-пол и т. Д. Чтобы указать, общие характеристики соединений, потребляемая мощность и экономические показатели играют ведущую роль для структур PcaC. Как правило, согласно предыдущим исследованиям, для стыков широко применялись два метода соединения: мокрые стыки и сухие стыки.

Мокрое соединение — это метод соединения с использованием повторного заливки бетона или заливки цементным раствором на объекте путем совместной работы со стальными стержнями по краям элементов, в то время как сухое соединение — это метод сварки или болтового соединения в местах соединения. Для мокрых швов может быть меньше вторичного бетонирования на месте во время сборки. Общие характеристики мокрых швов хорошие и могут рассматриваться как эквивалентные характеристикам монолитных соединений, но конструкция шва может быть сложной, а качество нелегко гарантировать, а также высокой стоимостью.Строительство сухих швов выполняется быстро и удобно, сокращает вторичный полив на участке, легко обслуживать и повторно использовать. Он действительно может отражать преимущества современной индустриализации строительства и развития сборных конструкций. Сухое соединение имеет определенное применение в Европе и других странах, но его можно использовать только в сейсмоопасных зонах, таких как Япония и Китай, особенно для высотных сооружений. Важным ограничивающим фактором является то, что сейсмические характеристики соединений должны быть усилены, чтобы соответствовать требованиям конструкций в зонах.

С другой стороны, как разборное соединение, сухое соединение является ключевой технологией для конструкций, подлежащих деконструкции (DfD), которая может значительно повысить устойчивость конструкции за счет повторного использования компонентов, соединенных стыками, включая почти все конструкции. такие как стальные и железобетонные (ЖБИ) конструкции. Прямое повторное использование ценных компонентов, полученных из старых конструкций, привлекает инженеров и исследователей во всем мире, поскольку процесс повторного использования может эффективно контролировать загрязнение строительными отходами и отходами сноса, может снизить количество используемых строительных материалов для новых конструкций, может потребляют меньше энергии в процессе строительства, что может способствовать устойчивости строительства.По сравнению с переработкой строительных отходов и отходов сноса, повторное использование отходов показывает свое превосходство, как показано на Рисунке 1. Согласно литературным данным, сухое соединение и мокрое соединение, включая сшивание сборных элементов, таких как стены, работающие на сдвиг, были хорошо исследованы в последние 50 лет. В 1980-х и 1990-х годах Ван и соавт. [5,6,7,8] изучали характеристики мокрых стыков сборных плит перекрытий, в том числе влияние коэффициента пролета на сдвиг, осевого давления, армированного бетона и типов соединений на стыки крупноплитных конструкций.Их результаты включены в «Правила проектирования и строительства быстровозводимых крупнопролетных жилых домов» [9] и используются до сих пор. В 1989 году Rizkalla et al. предложили мокрое соединение шпоночного типа для соединения стенок, работающих на сдвиг, для систем стенок, работающих на сдвиг, PcaC [10]. Форма мокрого стыка стенок из PcaC, работающая на сдвиг, была ранней и чрезвычайно простой формой. Однако общие характеристики швов были намного ниже, чем у монолитных швов в конструкциях, что указывает на необходимость дальнейшего укрепления швов.После этого многие исследователи [11,12,13,14,15,16,17] предложили некоторые методы улучшения суставов, предложенные Rizkalla et al. такие как увеличение стальной арматуры и стального листа. В 1996 году несколько профессоров, таких как Халед из Канады, предложили несколько типов стыков сборных железобетонных стен, соединенных стальными стержнями, и провели псевдостатические испытания сборных бетонных стен со стальными стержнями [18,19,20,21]. Среди предложенных стыков стен, методы соединения верхней и нижней стальных стержней сваркой и болтовым соединением уменьшили вторичную заливку бетона в стыках.Основной идеал предложений уже тогда можно рассматривать как сухую связь. После этого исследования по сухому соединению стали появляться в большом количестве. В 2008 году Крисафулли и Рестрепо [22] предложили метод сухого соединения, относящийся к сварным соединениям стальных конструкций. Способ подключения прост и удобен, однако его применение в системе бетонных конструкций требует дальнейшего изучения. В Китае группа Е [23,24,25,26] представила немецкую технологию проектирования и производства композитных панелей, а также улучшила сейсмический расчет ламинированных пластинчатых стен [24] и изучила поведение стыков при сдвиге.В 2010 году Генри и др. [27,28,29] предложили сухое соединение, основанное на использовании болтовых соединений и сварки, а затем выполнили серию анализов методом конечных элементов и экспериментов с сухими соединениями. В Японии основные результаты исследования сборных стен со сдвигом в раннем возрасте были опубликованы Архитектурным институтом Японии, например, Ref. [30]. Takagi et al. и Nagae et al. [31,32,33] предложили метод сварки стальной арматуры и стальной пластины для сборных стен со сдвигом. В этом соединении плита перекрытия помещается на нижнюю стенку сдвига, основание верхней стенки сдвига спроектировано с проемом, соединенным стальной пластиной, а затем стальные стержни верхней и нижней стенок сдвига привариваются к стене. стальные пластины.В завершение проем закрывается безусадочным высокопрочным раствором. Jiang et al. [34,35,36,37,38] также выполнили множество исследований на сборных железобетонных стенках, работающих на сдвиг, и впервые предложили «стальные элементы соединения внахлест со вставленными зарезервированными отверстиями» для мокрых швов [36]. эффективные спиральные арматурные хомуты внутри, которые усилили эффект зажима на бетон и улучшили характеристики анкеровки стали внутри бетона [37,38]. Исследовательские группы Qian et al.[39,40,41] предложили вертикальное анкерное соединение со стальной гильзой для стенок из PcaC, работающее на сдвиг, метод непрямого перекрытия однорядных стальных стержней. Его режим отказа, энергоемкость, жесткость и т. Д. Оказались в основном такими же, как и у монолитной конструкции, и могут использоваться в качестве стыковочного соединения для сборных конструкций [42]. В последние годы Sun et al. . [43] предложили новую полностью собранную железобетонную конструкцию со сдвигающейся стенкой (IPSW), соединенную высокопрочными болтами. Их основная идея заключалась в следующем: горизонтальные стыки были приварены к вставной раме, которая сначала была размещена на стеновых панелях PcaC и нижнем крае путем соединения концов вертикальных концов арматурных стержней.Смежные стены соединялись соединительными стальными каркасами и высокопрочными болтами для передачи усилий между соседними стеновыми панелями. С тех пор в Китае стало проводиться больше отечественных исследований сухих узлов, но основное направление исследований было сосредоточено на форме и поведении сухих узлов, а исследования общей производительности и анализа напряжений узлов сухого типа были Таким образом, форма ранее предложенных мокрых соединений обычно сложна по сравнению с сухими соединениями.Поскольку раствор для мокрого шва может быть эквивалентен монолитному, ранние исследования швов были сосредоточены на мокрых швах. Исследования мокрых стыков сборных бетонных конструкций дали ряд значительных результатов, однако стыки имеют следующие проблемы: (1) Метод мокрого соединения может лишь в определенной степени увеличить скорость строительства для вторичного литья. процессы бетона обычно необходимы; (2) непросто гарантировать качество конструкции «мокрых» соединений [33,34,40]; (3) «мокрое» соединение стоит дорого [35].По сравнению с решениями для мокрого подключения решения для сухого подключения могут эффективно преодолевать вышеупомянутые проблемы и иметь преимущества, заключающиеся в уменьшении загрязнения на участке, сокращении потерь ресурсов и упрощении процесса строительства. В последние годы тенденция исследований сборных стыков стенок, работающих на сдвиг, начала смещаться в сторону сухого соединения. В Китае были предложены различные сварные стыки стеновых конструкций на основе зарезервированных отверстий и заливки гильзой. С улучшением качества строительства и повышением требований к скорости строительства, исследования сухих швов стали популярными.В настоящее время исследования сухих соединений в основном сосредоточены на проверке сухих соединений, исследования механизма сопротивления сухих соединений ограничены. Основная цель исследования — изучить конструктивное поведение разъемных болтовых соединений при циклических нагрузках, проанализировать механизм сопротивления соединений при циклической сдвиговой нагрузке, изучить технико-экономическое обоснование и общие характеристики соединений малоэтажных конструкций при землетрясении. зоны отдыха.

5. Обсуждение неисправностей и рекомендации по расчету соединений

5.1. Механизм деформации и сопротивления шарниров

О механизме сопротивления и деформации болтовых соединений в следующих разделах кратко излагаются некоторые ключевые особенности. Здесь в названии одних и тех же образцов / блоков «1» и «2» обозначают измеренные значения деформации в верхней и нижней частях образцов / блоков. Например, LSZ1-1 и LSZ1-2 LSSZ4 на Рисунке 12 означают значения деформации продольных стержней, расположенных в верхнем и нижнем положениях стержней в блоке LSZ1 LSSZ4.Сопротивление стальной арматуры в бетонном блоке — на начальном этапе нагружения деформации арматурных стержней были небольшими и резко возросли после того, как смещение центрального блока достигло 5–10 мм, где бетон начал трескаться. После того, как вертикальное смещение достигло 15 мм, деформация арматурных стержней зоны соединения достигла пределов текучести, и деформация арматуры развивалась до окончательного разрушения стальных стержней. Кроме того, когда бетоны швов обладают большей прочностью на сжатие, доля арматурных стержней в блоках становится меньше, как в образце LSSZ13, показанном на рисунке 12.Деформация бетона — согласно анализу, деформация бетонных блоков была сосредоточена в зоне соединения испытуемых образцов, а основные повреждения бетона систематизированы следующим образом: Растрескивание бетона произошло около отверстий под болты, быстрое развитие трещин и сильное разрушение бетон и сколы бетона, наконец. Как показано на рисунке 13, данные испытаний на деформацию бетона подтвердили результаты анализа, в которых деформация бетона увеличивалась по мере смещения до его максимальной деформации.Кроме того, развитие деформации подошвенной части бетонных блоков было представлено следующим образом: деформация бетона незначительно увеличивалась при приложении нагрузки, но деформация бетона частей была довольно небольшой и составляла 50–400 мкс, когда образец был поврежден. Это свидетельствует о том, что повреждение бетонного блока было локальным для болтовых соединений в железобетонных стеновых конструкциях. Кроме того, деформация стальных стержней в зоне соединения была намного больше, чем у других стальных стержней, что указывает на то, что стальные стержни в зоне стыка были серьезно повреждены растягивающим напряжением, но арматура вдали от зоны стыка была небольшой.На рисунке 12 показано развитие деформации стальной арматуры в бетонных блоках в двух типичных соединениях. Деформация стального листа — аналогично деформации бетона в соединениях, деформация стального листа в двух направлениях увеличивалась по мере вертикального смещения соединений. . Однако возрастающее состояние было обнаружено на ранней стадии нагружения, за исключением образца LSSZ13. На последней стадии нагружения, как показано на Рисунке 14, за исключением того, что основная деформация стального листа LSSZ13 превышала деформацию текучести пластины, основная деформация стальных пластин других образцов была намного меньше, чем деформация текучести. пластин, указывая на то, что болты LSSZ13 работали более эффективно, чтобы противостоять деформации в течение всего процесса загрузки.Причина может быть объяснена расположением стальных стержней, которое сделало стальной лист более стойким на последней стадии нагружения. С этого момента мы можем понять, что стальная пластина должна быть улучшена для улучшения циклического поведения болтовых соединений, а не только за счет увеличения количества стальных болтов и обеспечения разумного расположения стальных болтов.

5.2. Основные характеристики реакции на смещение болтовых соединений

Как показано на Рисунке 15, болтовые соединения могут иметь значительную несущую способность по сравнению со сварными соединениями в тех же условиях, однако во время работы следует замечать проскальзывание болтовых соединений. оформление стыков.Таким образом, реакцию суставов на смещение нагрузки можно разделить на пять возможных стадий, а именно:

• Стадия I — стадия упругой деформации.

На этом этапе хорошо затянутый стык может заставить бетонные блоки с болтовым креплением работать хорошо без большого проскальзывания и работать упруго без большой остаточной деформации после снятия нагрузки. Следует отметить, что ключевым процессом этапа является затяжка болтов, что хорошо контролируется современными технологиями.Механические свойства стальных болтов и стального листа также являются очень важными факторами, влияющими на этап, например, на этом этапе полезно использовать высокопрочные болты.

• Этап II — этап упруго-малопластической деформации.

Пластическая деформация шва вызывается небольшим повреждением болтовых соединений, например, растрескиванием бетона, которое обычно начинается с отверстия, так как сопротивление пластической деформации бетона обычно намного меньше, чем у других частей в швах.Небольшая деформация изгиба стальных болтов также является одной из причин пластического поведения соединений. Следовательно, на этом этапе пластическая деформация швов в значительной степени зависит от механических свойств используемого бетона и стальных болтов. На этом этапе обычно заканчивается, пока сустав не достигнет статуса доходности.

• Этап III — этап большого пластика и проскальзывания.

Стадия проскальзывания стыков — это процесс быстрого снижения жесткости и большого количества пластических повреждений зоны стыка, в основном включающих раздавливание бетона в отверстиях в блоках и большую деформацию изгиба стальных стержней.На этом этапе сопротивление суставов нагрузке все еще может увеличиваться, однако коэффициент увеличения нагрузки обычно невелик. Эта стадия обычно заканчивается в характерной точке, в которой соединения начинают переходить в стадию упрочнения под нагрузкой, что может быть связано с деформацией расширения зоны соединения, такой как возможное расширение двух стальных пластин, вызванное дробленым бетоном.

• Этап IV — этап закалки.

Стадия затвердевания стыков может быть вызвана следующими причинами: стальные болты достигли состояния повторной затяжки из-за расширения бетона внутри; или болты контактируют с внутренними хомутами; или движение или проскальзывание стального листа сдерживается окружающими частями соединений.На этом этапе суставы быстро развивают несущую способность для достижения максимального сопротивления нагрузке.

• Стадия V — стадия деградации нагрузки.

После достижения максимальной нагрузки на соединения несущая способность болтовых соединений обычно начинает снижаться по следующим причинам: (1) срезание хомутов, контактирующих со стальными болтами, (2) срезное разрушение стальных болтов, (3) выкручивание стальных болтов и (4) растрескивание или разрушение стального листа.Среди них первые два случая обычно возникают, когда используется мало хомутов, или используемые хомуты слишком слабые, или стальные болты слишком слабы. Случай (4) может возникнуть, когда для соединений используется небольшое количество стальных болтов, а стальная пластина слишком слабая или слишком тонкая. Когда на поверхность стыка возникает внеплановая нагрузка, возможно, вызванная плоской деформацией стальной пластины, вызванной внутренним поврежденным бетоном, может возникнуть случай (3).

5.3. Возможные режимы разрушения болтовых соединений

Согласно этому исследованию, возможные режимы разрушения стальных болтовых соединений, предлагаемых для железобетонной конструкции с DfD, имеют:

(1) Разрушение бетона при раздавливании и сдвиговом разрушении хомутов.

Прочные стальные болты вызывают повреждение бетона, особенно когда бетон непрочен, а затем болты контактируют непосредственно с окружающими хомутами. Приближающаяся нагрузка вызывает разрушение стальных хомутов при сдвиге.

(2) Разрушение стальных болтов при сдвиге.

При использовании низкопрочных стальных болтов или над высокопрочным бетоном и стальной пластиной для соединений может произойти отказ.

(3) Разрушение стальных болтов при растяжении.

Этот режим обычно возникает из-за плоского повреждения бетона между стальными пластинами и ухудшается при использовании слабого стального болта.

(4) Вытяжка стальных болтов.

Чрезмерное повреждение бетона и стальной пластины приводит к тому, что болты находятся под высоким растягивающим напряжением вместе с их гайками, что затем расширяет отверстия в стальной пластине и бетонном блоке. Этот вид отказа обычно возникает при разрушении болтов в зоне их завинчивания.

(5) Разрушение стального листа.

Когда в болтовых соединениях используется достаточно стальных болтов и относительно слабая стальная пластина, этот режим, возможно, возникает из-за прямого сильного сдвига болтов.

5.4. Рекомендации по проектированию болтовых соединений в железобетонной конструкции с DfD

На основании этого исследования представлены следующие рекомендации по проектированию стальных болтовых соединений для повышения безопасности и устойчивости железобетонных конструкций с DfD:

A )

Улучшите пластическую деформацию отверстий в бетоне, используя высокопрочный бетон или используя металлическую трубу внутри отверстия, чтобы увеличить прочность соединения болт-отверстие.

B)

Организуйте зону усиления армирования, чтобы ограничить полное движение / проскальзывание болтов, чтобы хомуты могли сопротивляться движению стальных болтов.

C)

Для соединений рекомендуются высокопрочные болты.

Related posts

Latest posts

Leave a Comment

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *