Утеплитель паропроницаемый: Паропроницаемый утеплитель для газобетона
Содержание
Паропроницаемость стен. «Дышащий» утеплитель это — нонсенс!
«Утеплитель должен быть дышащим!» Как часто Вы слышали такое безапелляционное утверждение со стороны продавца утеплителя, знающего свое дело? И действительно, что может быть важнее «дыхания» для человека? В один момент, все остальные достоинства утеплителя мгновенно отходят на задний план. В голове звучит тревожная музыка, холодный пот прошибает и как молотом по наковальне идет отбивка слов: «НЕдышащий утеплитель! Что может быть хуже? Это же так жутко!!! Боже мой, и как я чуть его не купил…» Может быть попробуем вместе проникнуть в суть вопроса? Ведь надо же разобраться в этом, а то ведь вдруг и в самом деле выяснится «какая бяка этот не дышащий утеплитель».
Паропроницаемость стен
В последние пять лет, как-то исподволь, но с нарастающим темпом, в отношении технологии применения строительных материалов и конкретно при обсуждении теплоизоляционных конструкций начал активно акцентироваться вопрос паропроницаемости стен с приданием нарочитой значимости данного фактора для микроклимата помещений. Доходит вплоть до того, что паропроницаемость теплоизолированных стен считается, чуть ли не главным параметром, характеризующим теплоизолирующую конструкцию, отодвигая порой на второе место даже основной смысл существования теплоизоляционного слоя – сопротивление теплопередаче ограждающих конструкций, т.е. сохранение тепла.
Проанализировав имеющиеся публикации, касающиеся вопроса «здорового дыхания стен» можно сделать вывод о том, что позиционирование теплоизоляционных товаров, основанное на принципе «здорового дыхания стен» есть лишь неудачно выдуманная рекламная «фишка», не имеющая ничего общего с реальной жизнью. Развенчание данного мифа рано или поздно должно наступить! Рассмотрим, каким образом, на самом деле, осуществляется диффузия воды сквозь стены и какое влияние это оказывает на микроклимат помещения?
Физические основы процесса выглядят следующим образом: в отношении атмосферы внутри помещения и снаружи существует разница парциального давления, если эта разница будет положительной, то из-за присутствующей диффузии воды сквозь стену влага будет перемещаться из помещения наружу, если же разница будет отрицательной, то наоборот, какое — то количество воды будет перемещаться за счет диффузии сквозь стену извне в помещение. Чем больше разница парциальных давлений и чем меньше диффузное сопротивление материалов, тем эффективней будет идти этот процесс. Наибольшая разница парциального давления между атмосферой внутри помещения и снаружи существует зимой и летом. Зимой она положительна и вода за счет диффузии сквозь стену покидает внутренние помещения. Летом (особенно в жару и после дождя) разница парциальных давлений отрицательна и вода диффундирует извне внутрь помещений.
Однако не стоит думать, что установление равновесия парциальных давлений между воздухом внутренних помещений и внешней атмосферой происходит только благодаря диффузии сквозь стены. Основным характеризующим это явление фактором, является конвекция воздушных масс, на долю которой в установлении равновесного состояния парциальных давлений и поддержание микроклимата во внутренних помещениях приходится более 98% этого «водопереноса». Дабы не быть голословным, оценим численную составляющую диффузии воды сквозь кирпичную (кирпич керамический, полнотелый) стену толщиной в два кирпича при разнице температуры внутри и снаружи помещения в 20оС и разности влажности в 20% (в помещении — 60%, на улице – 80%). Диффузия воды наружу сквозь метр квадратный подобной стены за сутки не превысит – 10 грамм! И это просто «голая» стена без всякого утеплителя, штукатурного слоя, краски, обоев, стеновых панелей, зеркал, картин и т.п., создающего в любом случае дополнительное сопротивление диффузии воды сквозь стену в принципе!
Таким образом, даже если жить в обычных неоштукатуренных кирпичных стенах без внутренней отделки особо насладится «здоровых дыханием стен» не удастся т.к. сквозь них за сутки диффундирует (проходит) не более 1 килограмма воды. В то же время, за счет конвекционных процессов внутреннему жилому помещению зимой приходится избавляться от более чем 10 килограмм воды ежесуточно! Надейся бы мы только на «здоровое дыхание стен» и герметично закупорив подобную комнату зимой (избавившись от конвекционного переноса масс воды струями воздуха) – выпадение первой росы на стенах пришлось бы наблюдать уже через несколько часов.
Вообще в вопросе «здорового дыхания стен» существует даже логический парадокс, который заключается в том, что мы изо всех сил стараемся сделать более герметичными для пара и газа оконные и дверные проемы, а также сами окна и двери и в тоже время, кто-то говорит о повышении паропроницания стен для весьма неэффективной и вычурной дополнительной вентиляции здания. В то же время вопросы вентиляции помещений, как естественной, так и принудительной, имеют гораздо более простые и эффективные инженерные решения, используемые десятилетиями и веками. Стена же должна исполнять возложенные на нее функции — препятствовать прохождению сквозь нее воздуха, воды, тепла и звука! Из этого следует очевидный вывод: чем менее паропроницаем материал (в том числе и теплоизоляционный) применяемый при сооружении стеновой конструкции, тем более эффективно она (стена) исполняет свою функцию.
Продолжая тему теплоизоляционных материалов, следует сделать вывод, что при устройстве закрытых теплоизоляционных систем наиболее эффективны ячеистые материалы (пеностекло и пенополиуретан), нежели волоконные материалы, ведущие себя в закрытых теплоизоляционных системах более капризно, малоэффективно и с потенциальным риском действительно служить причиной заметного увлажнения внутренний помещений здания теплоизолированного волоконным материалом. Посмотрим более пристально на процессы «водопереноса» в герметично (для воздуха) закрытых теплоизоляционных системах с использованием волоконных неорганических материалов. Будь то штукатурные системы или системы с теплоизоляционным слоем внутри кладки в волоконном материале интенсивно происходят газообменные процессы, в отличие от ячеистых теплоизоляционных материалов, где газы герметично закупорены в замкнутых ячейках.
Самым актуальным в нашем случае анализа эксплуатации волоконных материалов является процесс переноса и перераспределения воды растворенной в воздухе. И здесь явление диффузии влаги сквозь стены (сколь бы незначительным оно не было) весьма важно, т.к. зачастую приводит к негативным последствиям. Если вы еще раз внимательно перечтете абзац данной статьи, посвященный описанию процесса диффузии, с точки зрения физики то увидите, что вектор переноса воды летом за счет разницы парциальных давлений направлен извне помещения внутрь. К этому стоит добавить и капиллярные явления переноса жидкости, которые тоже приводят к движению масс воды внутрь стены за счет увлажнения поверхности стены дождями в весенне-осенний период. Таким образом, газовая среда между волокон каменной ваты или стекловаты насыщается водой до высокого значения влажности. При сезонном похолодании атмосферы избыточная влага конденсируется на поверхности волокон из охлаждаемого воздуха между волокон. Отсутствие конвекции между волокнами приводит к отсутствию высыхания жидкости, которая начинает скапливаться внутри волоконного материала. Жидкость конденсируется именно на волокнах т.к. площадь поверхности волокон в сотни тысяч раз больше поверхности стен! Это легко вычислить, зная толщину волокон, плотность материала из которого состоят волокна и плотность теплоизоляционной волоконной плиты.
Итак, в герметично закрытой системе теплоизоляции с использованием промежуточного слоя из каменной ваты или стекловаты, устанавливается газовая среда, перенасыщенная парами воды с протеканием процесса конденсации с усилением последнего при падении температуры атмосферы ниже точки замерзания воды. Причиной усиления процесса насыщения теплоизоляционного волоконного слоя именно в зимний период, когда устанавливается стабильная температура ниже нуля, является как усиление диффузии воды из внутреннего помещения через стену (разница парциальных давлений внутреннего воздуха и внешней атмосферы возрастает) в воздушную среду волоконного материала, так и замерзание воды на внешней поверхности стены в микропорах и микротрещинах, препятствующее выводу воды из теплоизоляционного слоя хотя бы за счет незначительного в этом отношении эффекта диффузии. Волоконный материал в этот момент начинает банально мокнуть и отсыревать. Вода именно в виде жидкости появляется на поверхности стороны стены контактирующей с волоконным материалом. Диффузия воды сквозь стену в направлении «внутреннее помещение – теплоизоляционный слой» прекращается, т.к. воздух внутри волоконного материала перенасыщен водой и имеет влажность в 100%. В то же время вода, сконденсировавшая в состояние жидкости внутри теплоизоляционного волоконного слоя, начинает просачиваться внутрь помещения за счет капиллярных явлений. И если не будет очень хорошей вентиляции помещения и «выноса» влаги за счет конвекции воздушных струй, стены начнут сыреть со всеми вытекающими отсюда последствиями! То есть, именно применение волоконных материалов в закрытых системах утепления приводит в помещениях с затрудненной и плохой вентиляцией к повышению влажности и сырости!
Все вышеописанное давно известно и досконально изучено. Высокая паропроницаемость волоконных материалов признана очевидным недостатком данного типа теплоизоляторов. Для того чтобы уменьшить неприятные последствия применения таких материалов предпринимаются следующие шаги: волокна покрываются гидрофобным составом, дабы уменьшить коэффициент смачиваемости материала и снизить накопление воды на волокнах в состоянии жидкости; создаются дорогостоящие системы вентиляции теплоизоляционного волоконного слоя для перманентного «подсушивания» каменной ваты и стекловаты; внутренний слой стены, защищающий теплоизоляционный материал, изготавливается из максимально влаго- и паро- непроницаемого материала. Это общеизвестно и причем настолько в порядке вещей, что прямо под пространными рассуждениями про «здоровое дыхание стены» зачастую размещена фотография, где облицовка теплоизоляционного слоя из каменной ваты производится клинкерным кирпичом – абсолютно паро — и водо- непроницаемым материалом! Как через клинкерный кирпич будет дышать эта каменная вата, — непонятно!
Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (в данном случае закрытоячеистый пенополиуретан).
Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю. Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями. Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному. Как благоприятный результат подобной системы утепления с использованием пенополиуретана, гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надёжного паронепроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!
Паропроницаемый утеплитель для стен
Насколько важен параметр — паропроницаемость в современных видах утепления
Если открыть любую информационную брошюру или рекламную статью во всемирной паутине, которые дают характеристики ватным утеплителям, обязательно упоминается такое свойство этого материала, как отличная паропроницаемость. Этот параметр постоянно связывают с понятием «дышащих стен», около которых на многих строительных площадках и форумах постоянно возникают яркие споры и бесконечные дискуссии.
Где же истина?
Какой сайт ни возьми, везде производители расхваливают высокую паропроницаемость ватных утеплителей, делая акцент на том, что данный материал создаёт оптимальный микроклимат в жилых комнатах и обеспечивает так называемое «дыхание» стеновых конструкций.
Пароизоляционная прослойка – важное свойство для качественного утепления
Вместе с тем многие производители ватного материала не отрицают такой аргумент, что пароизоляционная прослойка – важный и неотъемлемый составляющий элемент любого строения, в котором используется пенополиуретан или похожая форма теплоизоляции. В этом нет ничего странного, потому что соприкосновение гигроскопичной теплоизоляции с молекулами воды способствует намоканию защитного изделия. В результате получается значительное повышение коэффициента теплопроводности.
Хорошую паропроницаемость ватных утеплителей скорее можно отнести к недостаткам, чем к достоинствам. Некоторые изготовители такой теплоизоляции уже неоднократно пытались акцентировать внимание общественности на данном моменте. В качестве аргумента они используют мнение авторитетных учёных, а также опытных инженеров и мастеров в сфере современной строительной отрасли.
Воздухопроницаемость в утепление — больше отрицательное свойство, чем положительное
К примеру, известный учёный К. Ф. Фокин, грамотный и авторитетный гуру в сфере теплофизики, высказывает такую точку зрения, что, исходя из теплотехнических параметров, воздухопроницаемость ограждающих элементов скорее отрицательное свойство, а не положительное. Обычно зимой при движении атмосферы изнутри помещения наружу происходят сверхнормативные теплопотери ограждений и охлаждение самих комнат. А при движении атмосферы снаружи вовнутрь происходит отрицательное воздействие на влажностный параметр наружного ограждения, и, как результат, образуется точка росы.
Утеплитель, который подвержен воздействию влажной среды, сам нуждается в дополнительных мерах защиты, в ином случае теплоизоляционные параметры материала просто не способны обеспечить свою главную задачу – сохранение тепла и оптимального микроклимата внутри помещений. Потребителям необходимо учитывать ещё один неприятный момент. Такой намокший утеплитель представляет собой идеальную почву для развития различных вредных микроорганизмов, становится рассадником патогенных грибков и плесени. Отсюда можно сделать вывод, что применение такого материала может не только отрицательно сказаться на здоровье обитателей дома, но и может привести к разрушению сопутствующих материалов, с которыми он контактирует.
Необходимо акцентировать внимание на том, что качественная теплоизоляция должна иметь и соответствовать таким параметрам, как устойчивость к влаге, безвредность и нетоксичность материала для человека и окружающего пространства, минимальный коэффициент теплопроводности и низкая паропроницаемость. Использование продукции, которая соответствует таким параметрам, не повлияет на стены, и они не смогут «дышать». Однако их применение позволит эффективно исполнять своё прямое назначение – сохранение оптимального микроклимата во всём доме и обеспечение качественной защиты от неблагоприятных факторов агрессивной внешней среды.
termoizol-ppu.ru
Паропроницаемость стен при использовании различной теплоизоляции, пенополиуретан, будут ли стены дышать
В последние пять лет, как-то исподволь, но с нарастающим темпом, в отношении технологии применения строительных материалов и конкретно при обсуждении теплоизоляционных конструкций начал активно акцентироваться вопрос паропроницаемости стен с приданием нарочитой значимости данного фактора для микроклимата помещений. Доходит вплоть до того, что паропроницаемость теплоизолированных стен считается, чуть ли не главным параметром, характеризующим теплоизолирующую конструкцию, отодвигая порой на второе место даже основной смысл существования теплоизоляционного слоя – сопротивление теплопередаче ограждающих конструкций.
Проанализировав имеющиеся публикации, касающиеся вопроса «здорового дыхания стен» можно сделать вывод о том, что позиционирование теплоизоляционных товаров, основанное на принципе «здорового дыхания стен» есть лишь неудачно выдуманная рекламная «фишка», не имеющая ничего общего с реальной жизнью. Развенчание данного мифа рано или поздно должно наступить! Рассмотрим, каким образом, на самом деле осуществляется диффузия воды сквозь стены и какое влияние это оказывает на микроклимат помещения?
Физические основы процесса выглядят следующим образом: в отношении атмосферы внутри помещения и снаружи существует разница парциального давления, если эта разница будет положительной, то из-за присутствующей диффузии воды сквозь стену влага будет перемещаться из помещения наружу, если же разница будет отрицательной, то наоборот, какое — то количество воды будет перемещаться за счет диффузии сквозь стену извне в помещение. Чем больше разница парциальных давлений и чем меньше диффузное сопротивление материалов, тем эффективней будет идти этот процесс. Наибольшая разница парциального давления между атмосферой внутри помещения и снаружи существует зимой и летом. Зимой она положительна и вода за счет диффузии сквозь стену покидает внутренние помещения. Летом (особенно в жару и после дождя) разница парциальных давлений отрицательна и вода диффундирует извне внутрь помещений.
Однако не стоит думать, что установление равновесия парциальных давлений между воздухом внутренних помещений и внешней атмосферой происходит только благодаря диффузии сквозь стены. Основным характеризующим это явление фактором, является конвекция воздушных масс, на долю которой в установлении равновесного состояния парциальных давлений и поддержание микроклимата во внутренних помещениях приходится более 98% этого «водопереноса». Дабы не быть голословным оценим численную составляющую диффузии воды сквозь кирпичную (кирпич керамический, полнотелый) стену толщиной в два кирпича при разнице температуры внутри и снаружи помещения в 20оС и разности влажности в 20% (в помещении — 60%, на улице – 80%). Диффузия воды наружу сквозь метр квадратный подобной стены за сутки не превысит – 10 грамм! И это просто «голая» стена без всякого утеплителя, штукатурного слоя, краски, обоев, стеновых панелей, зеркал, картин и т.п., создающего в любом случае дополнительное сопротивление диффузии воды сквозь стену в принципе!
Таким образом, даже если жить в обычных неоштукатуренных кирпичных стенах без внутренней отделки особо насладится «здоровых дыханием стен» не удастся т.к. сквозь них за сутки диффундирует не более 1 килограмма воды. В то же время, за счет конвекционных процессов внутреннему жилому помещению зимой приходится избавляться от более чем 10 килограмм воды ежесуточно! Надейся бы мы только на «здоровое дыхание стен» и герметично закупорив подобную комнату зимой (избавившись от конвекционного переноса масс воды струями воздуха) – выпадение первой росы на стенах пришлось бы наблюдать уже через несколько часов.
Вообще в вопросе «здорового дыхания стен» существует даже логический парадокс, который заключается в том, что мы изо всех сил стараемся сделать более герметичными для пара и газа оконные и дверные проемы, а также сами окна и двери и в тоже время, кто-то говорит о повышении паропроницания стен для весьма неэффективной и вычурной дополнительной вентиляции здания. В то же время вопросы вентиляции помещений, как естественной, так и принудительной, имеют гораздо более простые и эффективные инженерные решения, используемые десятилетиями и веками. Стена же должна исполнять возложенные на нее функции — препятствовать прохождению сквозь нее воздуха, воды, тепла и звука! Из этого следует очевидный вывод: чем менее паропроницаем материал (в том числе и теплоизоляционный) применяемый при сооружении стеновой конструкции, тем более эффективно она (стена) исполняет свою функцию.
Продолжая тему теплоизоляционных материалов, следует сделать вывод, что при устройстве закрытых теплоизоляционных систем наиболее эффективны ячеистые материалы (пеностекло и пенополиуретан), нежели волоконные материалы, ведущие себя в закрытых теплоизоляционных системах более капризно, малоэффективно и с потенциальным риском действительно служить причиной заметного увлажнения внутренний помещений здания теплоизолированного волоконным материалом. Посмотрим более пристально на процессы «водопереноса» в герметично (для воздуха) закрытых теплоизоляционных системах с использованием волоконных неорганических материалов. Будь то штукатурные системы или системы с теплоизоляционным слоем внутри кладки в волоконном материале интенсивно происходят газообменные процессы, в отличие от ячеистых теплоизоляционных материалов, где газы герметично закупорены в замкнутых ячейках.
Самым актуальным в нашем случае анализа эксплуатации волоконных материалов является процесс переноса и перераспределения воды растворенной в воздухе. И здесь явление диффузии влаги сквозь стены (сколь бы незначительным оно не было) весьма важно, т.к. зачастую приводит к негативным последствиям. Если вы еще раз внимательно перечтете абзац данной статьи, посвященный описанию процесса диффузии, с точки зрения физики то увидите, что вектор переноса воды летом за счет разницы парциальных давлений направлен извне помещения внутрь. К этому стоит добавить и капиллярные явления переноса жидкости, которые тоже приводят к движению масс воды внутрь стены за счет увлажнения поверхности стены дождями в весенне-осенний период. Таким образом газовая среда между волокон каменной ваты или стекловаты насыщается водой до высокого значения влажности. При сезонном похолодании атмосферы избыточная влага конденсируется на поверхности волокон из охлаждаемого воздуха между волокон. Отсутствие конвекции между волокнами приводит к отсутствию высыхания жидкости, которая начинает скапливаться внутри волоконного материала. Жидкость конденсируется именно на волокнах т.к. площадь поверхности волокон в сотни тысяч раз больше поверхности стен! Это легко вычислить, зная толщину волокон, плотность материала из которого состоят волокна и плотность теплоизоляционной волоконной плиты.
Итак, в герметично закрытой системе теплоизоляции с использованием промежуточного слоя из каменной ваты или стекловаты устанавливается газовая среда, перенасыщенная парами воды с протеканием процесса конденсации с усилением последнего при падении температуры атмосферы ниже точки замерзания воды. Причиной усиления процесса насыщения теплоизоляционного волоконного слоя именно в зимний период, когда устанавливается стабильная температура ниже нуля, является как усиление диффузии воды из внутреннего помещения через стену (разница парциальных давлений внутреннего воздуха и внешней атмосферы возрастает) в воздушную среду волоконного материала, так и замерзание воды на внешней поверхности стены в микропорах и микротрещинах препятствующее выводу воды из теплоизоляционного слоя хотя бы за счет незначительного в этом отношении эффекта диффузии. Волоконный материал в этот момент начинает банально мокнуть и отсыревать. Вода именно в виде жидкости появляется на поверхности стороны стены контактирующей с волоконным материалом. Диффузия воды сквозь стену в направлении «внутреннее помещение – теплоизоляционный слой» прекращается, т.к. воздух внутри волоконного материала перенасыщен водой и имеет влажность в 100%. В то же время вода, сконденсировавшая в состояние жидкости внутри теплоизоляционного волоконного слоя, начинает просачиваться внутрь помещения за счет капиллярных явлений. И если не будет очень хорошей вентиляции помещения и «выноса» влаги за счет конвекции воздушных струй, стены начнут сыреть со всеми вытекающими отсюда последствиями! То есть, именно применение волоконных материалов в закрытых системах утепления приводит в помещениях с затрудненной и плохой вентиляцией к повышению влажности и сырости!
Все вышеописанное давно известно и досконально изучено. Высокая паропроницаемость волоконных материалов признана очевидным недостатком данного типа теплоизоляторов. Для того чтобы уменьшить неприятные последствия применения таких материалов предпринимаются следующие шаги: волокна покрываются гидрофобным составом, дабы уменьшить коэффициент смачиваемости материала и снизить накопление воды на волокнах в состоянии жидкости; создаются дорогостоящие системы вентиляции теплоизоляционного волоконного слоя для перманентного «подсушивания» каменной ваты и стекловаты; внутренний слой стены, защищающий теплоизоляционный материал, изготавливается из максимально влаго- и паро- непроницаемого материала. Это общеизвестно и причем настолько в порядке вещей, что даже в буклете «Теплоизоляция фасадов» (сентябрь 2004 года) представительства компании « Paroc» на странице № 19 прямо под пространными рассуждениями про «здоровое дыхание стены» размещена фотография, где облицовка теплоизоляционного слоя из каменной ваты производится клинкерным кирпичом – абсолютно паро — и водо- непроницаемым материалом! Как через клинкерный кирпич будет дышать эта каменная вата, — непонятно!
Вообще, буклеты представительства « Paroc» имеют множество неких семантических бессмысленностей, технических несуразностей и ошибок, однако не будем здесь давать рецензий, т.к. если данное представительство считает уместным печатать, то что печатает, то пусть так и делает. Более ценным в отношении свойств и применения каменной ваты является упоминавшийся выше финский буклет. Данный буклет не только не приветствует саму идею паропропускания, но и рекомендует при эксплуатации теплоизолированных помещений этого самого паропропускания не допускать, либо за счет герметизации конструкции теплоизолирующего слоя, либо (цитата) из того же финского буклета в отношении влагостойкости каменной ваты: — «На практике принято применять пароизоляционный барьер с «теплой» стороны конструкции». То есть финские «товарищи» представительства « Paroc» наоборот настаивают на дополнительной пароизоляции собственной каменной ваты. Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).
Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю. Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями. Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному. Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!
energo22.ru
Утепление с использованием ЭППС (паронепроницаемым утеплителем): afhh723 — LiveJournal
в последние время приходится заниматся стройкой, пришлось немного разобратся в теме вопроса, ну и попутно пришлось сталкнутся с парочкой мифов о которых неплохо бы рассказать.
дело в то что мифы эти распростроняют в основном «практики» — ну че первый дом построил — а плохо получилось — второй построил — лучше но плохо, давай третий строить… и таким образом он приходит к некому решнию и говорит — провереное практикой решение. и не дай бог у вас окажутся условия выходяшие за рамки применимости этого решения — касяк гарантирован. т.к. я такой роскоши учится на своих ошибках за чужие деньги, позволить себе не могу — строю для себя и своими руками — пришлось разобратся. надеюсь кому-то помогут мои изыскания.
часто можно слышать мнение дескать ЭППС это наше все или наоборот невкоем случае не используйте ЭППС — он плохой.
как материал он действительно не очень — горит, выделяет стирол, хоть и в небольших количествах, однако при пожаре может вас просто убить.
но я сейчас не об экологических свойствах, о больше о теплотехнических. недавно слышал мнение, что дескать ЭППС 100 можно утеплить дом из газосиликата — ха-ха. либо вы очень умный… либо как все 🙂
разберемся.
дело в том что ЭППС паронепроницаем, а значит температура до ЭППС должна быть выше точки россы, но вот незадача у газосиликата естественая низкая теплопроводность. т.е. если мы прикрутим его к ЭППС, то толшина последнего должна быть больше 200мм. ну и при этом понятно общее сопротивление теплопередаче будет выше нормированного примерно в 2.5 раза. т.е. по первым прикидкам ЭППС для утепления газосиликата не подходит. поробунем прикинуть на смарт канкуляторе: я специально не ставлю всякие «технологические» слои, просто для понимания:
ну чтоже наши подозрения вполне оправдываются, чтобы не уранить температуру ниже точки россы в газике, понадобилось 220 мм ЭППС, для неособо сурового климата — столько ЭППСа ставить не оптимально, а иначе в мороз в газике при определенных условиях будет вода -> плесень -> ну и какой-нибуть аспергиллёз, т.е. те кто говорит что для газика 100мм пенополистирола достаточно — спросите у него диплом инженера строителя. ещё надо заметить, что предположение «практиков» о том, что газосиликат нельзя утеплять пенополистиролом в общем-то верное, хоть и обосновать они его и не могут — просто плохо получается и все. вы видели чтобы кто-то ставил 250 мм ЭППС на газик? — вот и я нет, а 100мм с газосиликатом я бы не поставил — зона конденсации в газосиликате будет уже при 0. правда канкулятор мамой клянется, что влагонакопления не будет. тут уж решайте сами, если вы , закончите все «мокрые» работы, предварительно высушите газик в течении несколько летних месяцев и только потом закроетепе его 100 мм ЭППС, должно быть все хорошо, но это ловля тоненького лично меня всегда напрягала. да и ваще много строителей сушат газосиликат прежде чем закрыть его ЭППС? нуда действительно они все грамотные перцы и знают что закрытый ЭПП’сом газик сохнет очень долго, а образование конденсата растянет это период еще больше и за это время… смешно да? поэтому практика без теории яйца выеденого не стоит.
почему вода, даже чуть-чуть в газике меня напрягает? кроме всего прочего это еще и ухудьшениетепловых характеристик, т.е. сухое лучше мокрого. хоть и смарт канкулятор должен это и учитывать, мне спокойней если воды нет вообще.
такчто резонный вопрос — а что дружит с газиком «надежно»? да вата — возмите плотную для шукутурного фасада и будет вам счастье.
теплосопротивление больше 4 — ну это впринципе нормально, учитывая что вату я взял однородным слоем, с двумя неоднородными слоями смарканкулятор подглючивает.
ну хорошо, а можно впринципе использовать ЭППС — речь о теплотехнике. конечно да. просто надо подбирать одыкватные друг-другу материалы. т.е. в данном случае теплопроводность несущей части стены надо повысить. ну ОК — давай кирпич.
не плохо 3.51 (м²•˚С)/Вт — по первым прикаидкам нормально получается даже пустотельный кирпич.
так что пожалуйста 380 кирпич + 100 ЭППС.
давайте немого спо-сравниваем с ватой. газосиликат с ватой паропроницаем, причем паро проиницаемость слоя ростет к улице т.е. влагонакопления точно не будет, а кирпич+ ЭППС — это правило нарушается, однако как видно на графике температура в паропроницаемой часте стены ВЫШЕ точки росы. крометого кирпич обладет высокой капилярной активностью т.е. тянят воду. т.е. если даже конденсат появится, то будет «размазан» по толшине стены, и постепенно будет испарятся в помешение. т.е. для кладки стены луше использовать раствор с известью. известь вообще «волшебный» компонент.
что можно сказать ещё — ну как всегда дорогой вариант — возмем пеностекло, попутно заметим, что оно по теплопроводности больше чем ЭППС и его понадобится больше, зато хорошие экологические показатели. вобще для паронепроницаемых утеплителей чем теплопроводность несущей части стены больше, тем лучше. т.е. берите полнотельник — не ошибетесь, кстати железобетон тоже подойдет, однако тепло не будет, ну или добавляйте пеностекла, пустотельний кирпич же надо обязательно расчитывать хотябы в онлайн канкуляторе. т.е. если вы возмете стенку из поризованного кирпича + пеностекло вероятность огрести проблем намного больше.
стена с пеностеклом получилась довольно монструозная — я специально не стал рисовать еще и облицовку и так 600 мм. хотя раньше строиили в 2.5 кирпича и не парились. но я бы все же подумал нужна ли такая штука. и не забывайте щелочная среда + пеностекло = фигня. т.е. досточно «грамотно» отштукатурить такую стену — и все благополучно отвалится. и этА… я нарисовал битум, но нужен такой битум чтобы в один прекрасный сонечный день у вас пеностекло не свалилось со стенки.
что же с порокерамикой? впинципе если брать порокерамику, то можно поробывать взять пеностекла по-меньше, но кроме явной экономи на пеностекле, мы убиваем запас по влагонакоплению, кроме того поры неулучшают капилярную активность (т.е. кладку как минимум надо «сушить»), т.е. кроме явных приимуществ есть и не мене явные недостатки. но если очень хочется…
навсамом деле пеностекло может взять часть нагрузок из несущей стены, т.е. поступить также как и в статье про утепление газосиликатом, но здесь и так куча графиков. ктому же я плохо представляю эту связку «механически».
вобще производитель порокерамики рекомендует ЭППС. ну… почему бы нет? разберём вот такой пирог стены.
вариант довольно тонкий, но хорошее общее теплосопротивление 4.04 (м²•˚С)/Вт, если конечно «практики» сильно не накосячат и не зделают из замкнутой воздушной прослойки вентилируемую, хотя накосячит здесь можно много где, например стальная связь в этом зазоре сгнет быстро. не знаю мне нравится больше обычный кирпич — можно пустотельный дырчатый, порокерамика всетаки такая недогазик :). механическая прочность сравнимая, но при этом еще более хруткая , теплопроводность значительно хуже тяжело обрабатывать на месте, хоть капилярная активность лучше чем у газика, кладку ОДНОЗНАЧНО НАДО ВЫСУШИТЬ, прежде чем закрывать паронепроницаемым утеплителем.
т.е. те гени которые ставят в один таз полнотельник, порокерамический блок, газик, по прошестви нескольких дней заявляют, что полнотельник проигрывает всем — расмейтесь им в лицо. капилярная активность — это свойство, о котором надо знать и грамотно использовать, а не тупо записывать в «+» или «-«.
мне больше нравится так — если уж вам так нужна порокерамика (например полнотельник не проходит по весу) — возмите вату.
вата будет играть роль той самой страховки — она паропраницаема, те если вешать гранит озаботтесь о вент зазоре. в случае с обычным кирпечем страховка его капилярная активность.
теплосопротивлением стены я тоже бы не увлекался — всегда надо понимать, что есть еще пол, окна и крыша.
afhh723.livejournal.com
Огнестойкая теплоизоляция — виды, характеристики и применение. Жми!
В строительной практике очень часто приходится заниматься вопросами утепления зданий и других различных строительных сооружений. Это касается стен, перекрытия, пола, кровли.
Утепление строительных конструкций позволяет сократить тепловые потери в осенне-зимний период и уменьшить расход энергии на обогрев жилых помещений.
Применение современного листового утеплителя допускает снизить и толщину наружных стен с существенным уменьшением объемов строительных материалов, таких как кирпичи или пеноблоки. К тому же, почти все применяемые сейчас утеплители являются негорючими материалами, что положительно сказывается на пожарной безопасности домов и квартир.
Разновидности
В настоящее время имеется большое разнообразие различных видов негорючего утеплителя.
При этом можно выделить несколько основных:
- Минеральная вата – самый распространённый вид утеплителя – состоит из отдельных волокон, переплетенных в общую структуру. Минеральная вата выпускается в виде матов, скрученных в рулоны, и в виде отдельных плит. Для повышения водоотталкивающих свойств ее пропитывают специальным маслом или фенолспиртом.
- Керамзит – сыпучий пожаростойкий утеплитель, состоящий из глины в виде отдельных гранул в результате воздействия высоких температур в специальных печах. Керамзит используется не в чистом виде, а в виде специальной смеси.
- Перлит – сыпучий легкий огнеупорный и теплоизоляционный материал, получаемый из горных пород вулканического происхождения. Он выдерживает высокую температуру до 900 градусов Цельсия. Однако есть у него существенный недостаток – впитывает жидкость.
- Пеностекло – по структуре представляет собой вспененную стекломассу, образуемую из силикатных стекол при высокой температуре около 1000 градусов Цельсия с использованием газообразователя. После остывания пеностекло имеет значительную механическую прочность.
Среди всех перечисленных видов утеплителей необходимо остановиться на таком виде, как минеральная вата. Ее можно подразделить на несколько видов в зависимости от типа исходного продукта:
- Стекловата – производится из волокна, получаемого при смешивании стеклобоя с добавками из доломита, песка, известняка и соды. Она обладает высокой химической стойкостью. Температура, при которой стекловата способна нормально работать, – до 500 градусов Цельсия.
- Шлаковата – производится при расплаве доменного шлака, имеет характерную серую окраску, способна выдерживать значительную температуру до 600 градусов.
- Каменная вата – ее еще называют базальтовой по исходному материалу, из которого изготавливают данный утеплитель. Базальтовые горные породы при расплаве на специальном оборудовании образуют волокна толщиной 5-10 мкм и длиной до 20 мм. Такая вата способна выдержать температуру 300 градусов.
Основные формы выпуска минеральной ваты – это маты определенной толщины, свернутые в рулоны. Также минвата выпускается в виде плит, которые имеют большую жесткость по сравнению с матами.
[advice]Стоит отметить: выбирая минеральную вату в качестве утепления, обязательно принимайте во внимание условия, в которых она будет использоваться, и место её размещения. Утеплитель в виде матов имеет больший срок эксплуатации и лучший уровень теплоемкости.[/advice]
Области применения
Негорючий утеплитель имеет большие преимущества и его применяют в любых строительных сооружениях, в том числе и пожароопасных.
Керамзит издавна широко применялся в строительной практике еще до появления современных утеплителей из минеральной ваты. Его используют как утепляющую прослойку при выполнении полов на первых этажах домов. При устройстве бетонной отмостки в качестве подстилающего основания используют керамзит.
Также его применяют на чердачных перекрытиях частных домов для максимального утепления потолков жилой части дома. При устройстве кровель особо больших строительных объектов: зданий промышленных цехов, общественно-культурных заведений, супермаркетов используют слой керамзита в качестве утеплителя перед устройством стяжки и мягкой кровли.
Базальтовая вата или стекловата применяется при утеплении стен частных домов, скатных крыш, мансард.
Минвата в виде плит легко монтируется на стену с помощью термодюбелей, по форме напоминающих зонтики.
Для чистовой отделки поверх утеплителя используют гипсокартон или штукатурку, армированную сеткой. Минвата легко укладывается при утеплении скатной кровли любого дома. Она устанавливается между стропилами, а снизу подшивается листами ДВП, или OSB. Листы минваты легко режутся ножом.
Без применения теплоизоляции не обходится также установка котлов, печей, дымоходов.
[warning]Важно знать: дымоход, который проходит через перекрытие и кровлю, требует обязательной защиты его стенок от высокой температуры для обеспечения противопожарных мероприятий.[/warning]
Для этой цели подойдет базальтовый утеплитель или минеральная вата в виде плит.
Помимо наличия тепло- и шумоизолирующих свойств такой утеплитель служит пожаробезопасной изоляцией.
Теплоизоляция из базальтовых матов применяется при защите водопроводных труб от промерзания в зимний период.
При строительстве саун и бань большую популярность приобрел рулонный фольгированный утеплитель типа Изовер. С его помощью происходит утепление стен, потолка и пола. При этом алюминиевая фольга отражает инфракрасные лучи, обеспечивая термостойкость внутреннего объёма.
Принцип выбора
Учитывая большое разнообразие выбора термостойких и изоляционных материалов, перед их приобретением необходимо четко определиться, какой утеплитель подходит для данного типа строительных работ.
Немаловажное значение при выборе будет иметь цена. Помимо наличия таких качеств, как жаростойкость и термостойкость, необходимо обращать внимание и на такие характеристики, как влагостойкость.
Потому что многие утеплители при отличной огнестойкости и термостойкости очень хорошо поглощают воду, а это обязательно сказывается на их дальнейшей работе. В этом случае необходимо уделять большое внимание пароизоляции и гидроизоляции.
Смотрите видео, в котором пользователи путем тестирования определяют негорючие утеплители:
teplo.guru
Огнестойкий (огнеупорный) негорючий утеплитель: виды и применение
Для теплоизоляции помещений строительных объектов, трубопроводов, вентиляционных коробов инженерных коммуникаций используют как горючие, так и негорючие утеплители различных видов.
Определение негорючему огнестойкому утеплителю дает ГОСТ 30244-94, указывающий, что такой материал при воздействии источника зажигания горит открытым огнем не больше 10 с, а при испытаниях в лабораторной печи теряет не более 50% массы, создавая прирост температуры в ней не больше 50 ℃.
Все утеплители, не удовлетворяющие хотя бы одному из перечисленных условий, относятся к горючим, не огнестойким материалам.
Типы огнестойкой теплоизоляционной продукции
Виды
В отличие от сгораемых видов утеплителей, таких как опилки, маты, изготовленные из отходов переработки древесины, применяемых из-за их быстрого разрушения под воздействием влаги только внутри зданий, многие виды огнестойких теплоизоляционных материал также используют при монтаже навесных фасадных систем, в наружных стеновых панелях снаружи строительных объектов.
Существует несколько основных видов огнестойких утеплителей, подразделяющихся в зависимости от области их применения:
- Для стен, перекрытий как деревянных домов, так и строительных объектов, возведенных из кирпича, керамических блоков, железобетонных готовых, монолитных конструкций, в том числе изготовленных из огнеупорного (огнестойкого) бетона. В таких случаях используется как традиционная минеральная вата, так и более современный огнезащитный базальтовый материал, не впитывающий влагу и негорючий, в виде рулонов, матов, плит.
- Для дымохода, печей отопления жилых домов, бань чаще всего используют негорючий фольгированный материал из различных видов минеральных ват, имеющий повышенный коэффициент отражения тепловой энергии от слоя металлической фольги. А также за счет повышенной плотности негорючего утеплителя, используемого для этих целей в качестве заполнения участков термоизоляции перекрытий, прилегающих к дымовым трубам; элементов противопожарных разделок, отступок.
- Для термической изоляции, огнезащиты металлических конструкций вентиляционных воздуховодов; участков трубопроводных сетей, как транспортирующих теплоносители, включая воду, так и горючие жидкости, газовые смеси.
- Для двигателя, автотранспортного, железнодорожного средства, речного/морского судна/корабля, стационарных теплогенерирующих, вырабатывающих электроэнергию установок как для ограничения расхода тепловой энергии, нагрева смежных конструкций, отсеков, так в качестве надежной звукоизоляции, отсекающей громкий шум от работающих машин, механизмов.
- Для заполнения внутренних пустот, в конструкциях противопожарных перегородок, полотен огнестойких ворот, дверей, люков, используемых для защиты проемов в строительных преградах огню, дымовым потокам, что позволяет доводить предел их стойкости к огню до требуемых противопожарными нормами значений.
Такое деление на виды довольно условно, ведь большинство рулонных, плитных, листовых огнестойких утеплителей, в отличие от сыпучих, жидких вспенивающихся теплоизоляционных материалов, не подверженных горению, могут использоваться для термической, звуковой изоляции как помещений строительных объектов, участков их инженерных коммуникаций, так и двигательных отсеков транспортных средств, тепло-электрогенерирующих установок.
Состав и свойства
Основными параметрами огнестойких теплоизоляционных материалов являются:
- Материал изготовления, в большинстве случаев определяющий вид огнестойкого утеплителя, способы его применения на объектах строительства, участках инженерных коммуникаций.
- Толщина товарных огнестойких утеплителей, что зависит как от области их применения – для утепления отдельных видов строительных конструкций или участков трубопроводов, вентиляционных воздуховодов, так от свойств основного материала, использованного для их производства.
- Плотность, удельный вес, определяющие общую нагрузку на строительные конструкции, что зачастую критически важно для междуэтажных перекрытий жилых, общественных зданий.
В перечень основных материалов, используемых при промышленном производстве негорючих, огнестойких теплоизоляционных изделий, входят следующие природные, искусственно полученные вещества:
- Минеральная вата, называемая также шлаковатой, стекловатой, которую получают из кварцевого песка, отходов объектов металлургии, энергетики. Это наиболее давно используемый материал, обладающий невысокой стоимостью, но требующий защитных средств для работников, укладывающих его; осторожности при обращении с ним из-за опасности повреждения кожных покровов, глаз, органов дыхания.
- Базальтовый теплоизоляционный, огнезащитный материал, получаемый расплавом природного минерала базальта, получением из него сверхтонких негорючих волокон. Более высокая стоимость этого огнестойкого утеплителя компенсируется безопасностью обращения с ним, возможностью использовать его как внутри, так и снаружи строительных объектов в различных по климату регионах, в том числе с высокой влажностью воздушной среды.
- Пеностекло, получаемое в процессе спекания смеси измельченного стеклянного боя, крошки с каменным углем в качестве газообразующего агента в технологическом процессе производства. Полученный материал абсолютно не горюч, обладает высоким пределом стойкости к огню, низким коэффициентом теплопроводности. Его часто использует для термической изоляции помещений с высокой влажностью среды, например, подвалов, технических подполий, производственных участков с мокрым технологическим процессом.
- Керамзит, вермикулит, перлит – эта тройка сыпучих материалов давно используется для теплоизоляции межэтажных перекрытий, чердачных помещений, служит добавкой в «теплые» стяжки основания полов в жилых, общественных помещениях.
- Велит – современный негорючий утеплитель, имеющий пористую структуру, что производится из цементно-известкового сырья путем его вспенивания. По структуре, свойствам относится к пористым огнестойким бетонам, имея низкую плотность – до 140 кг/м3, так как до 90% его внутреннего объема – это воздух.
- Стеклопор – гранулированный пожаростойкий материал, получаемый в процессе вспучивания силикатов в результате резкого охлаждения расплава натриевых, калиевых стекол. Чаще всего его используют не в виде сыпучего материала, а как добавку в заливную теплоизоляцию межэтажных перекрытий строительных объектов, а также при производстве штучных огнестойких теплоизоляционных изделий.
- Огнестойкая пена, производимая на основе жидкого полиуретана с добавками веществ-антипиренов, придающими ей огнезащитные свойства.
Как несложно заметить, утеплитель негорючий в основном производится на основе природных, искусственных материалов минерального, неорганического происхождения, изначально являющихся негорючими.
Такая теплоизоляционная продукция имеет сертификаты пожарной безопасности, где их способность к горению указана НГ, то есть негорючие, в то время как подавляющее большинство утеплителей, полученных на предприятиях органического химического синтеза, например, различные виды пенопластов, пеноизолов; «экологическая вата» на основе переработанного целлюлозного вторичного сырья с добавками антипиренов, в лучшем случае являются трудногорючими, имея маркировку Г1.
Естественно, такие утеплители, несмотря на рекламные заверения некоторых производителей, представителей торговых организаций, ни в коей мере не могут претендовать на «звание» огнестойких утеплителей.
Свойства, дополнительно требуемые заказчиками – проектировщиками, строителями, организациями, эксплуатирующими здания, инженерные сооружения, коммуникации, которыми должен обладать пожаростойкий негорючий материал, который используют в качестве огнестойкого утеплителя:
- Низкая теплопроводность, обуславливающая высокие теплоизоляционные параметры.
- Влагостойкость, гигроскопичность.
- Способность к надежной звукоизоляции стен, перегородок, перекрытий, выделяющих защищаемые помещения.
- Безопасность применения, отсутствие выделения опасных для человека летучих веществ как при нормальных условиях эксплуатации, так и при сильном нагреве, в том числе при возникновении пожара внутри строительного объекта, где использован для утепления, звукоизоляции огнестойкий утеплитель.
- Высокая плотность при относительно небольшом удельном весе.
- Механическая прочность.
- Неизменность геометрических размеров, долговечность эксплуатации без потери огнестойких, теплоизоляционных параметров.
- Невысокая стоимость, что особенно важно для владельцев, заказчиков строительства частных деревянных домов.
- Простота работ по монтажу, укладке огнестойкого утеплителя, в том числе без найма сторонних специалистов.
Классификация
Часто классифицируют негорючий огнестойкий утеплитель по его агрегатному состоянию, внешнему виду, внутренней структуре, в зависимости от которых он может быть:
- Каркасный, в том числе многослойный, армированный негорючими материалами, часто используемый в качестве элементов конструктивной огнезащиты несущих металлических конструкций строительных объектов.
- Рулонный, позволяющий обертывать им как различные по форме, сечению элементы строительных конструкций, так и участки трубопроводов, вентиляционных коробов, которые необходимо защитить от промерзания, возможного воздействия огня при возникновении возгорания.
- Плитный, а также в виде отдельных теплоизоляционных матов, специально разработанных проектировщиками, производителями типоразмеров, что облегчает их монтаж, установку внутрь строительных конструкций, например, перегородок между помещениями.
- Сыпучий, в том числе искусственно вспученный, ячеистый, что значительно повышает его теплоизоляционные свойства.
- Жидкий вспенивающийся материал, застывающий при полимеризации, высыхании после нанесения на строительные конструкции, участки трубопроводных сетей, вентиляционных систем объектов защиты, чаще всего называемый огнестойкой пеной.
Выбор того или иного класса негорючих, огнестойких утеплителей определяется как проектными решениями, так и опытом использования в гражданском, промышленном строительстве при возведении, ремонте различных объектов.
Нормативные документы
Непосредственное отношение к производству, сертификационным испытаниям серийной продукции, стойких к огню теплоизоляционных материалов, возможности их использования для снижения пожарной опасности защищаемых объектов имеют следующие нормы, стандарты:
- ГОСТ 4640-2011 о производстве минеральной ваты – исходного материала для изготовления огнестойких утеплителей, способных эксплуатироваться в температурном диапазоне – 180 до 700℃.
- ГОСТ 21880-2011 о технологии изготовления прошивных огнестойких матов из минеральной ваты.
- ГОСТ 32313-2011 – то же о каркасных плитных плитах, матах, фольгированных цилиндрах из минеральной ваты, выдерживающих температурное воздействие до 1000℃.
- ГОСТ 32314-2012 – о видах огнестойких утеплителей, производимых из разных видов минеральных ват, применяемых при возведении строительных объектов.
- ГОСТ 30244-94 – об испытаниях на горючесть. Стандарт не применим к тем классам негорючих утеплителей, что выпускаются в виде гранул, готовых жидких растворов.
- НПБ 244-97 – о параметрах пожарной опасности теплоизоляционных материалов.
А также СП 112.13330.2011 – о ПБ строительных объектов, СП 4.13130.2013 – об ограничении развития пожара внутри защищаемых объектов, СП 2.13130.2012 – об обеспечении их стойкости к огню, в части применения огнестойких утеплителей при проектировании, устройстве противопожарных преград, изготовлении огнестойких заполнений проемов в них; общего снижения пожарной опасности зданий, строений в результате использования негорючих видов утеплителей.
Область применения
Пожаростойкий негорючий утеплитель используется при возведении, капитальном ремонте, проведении реконструкции разного вида, назначения строительных объектов – от частных надворных построек, жилых, дачных домов до высотных общественных, жилых зданий; производственных цехов, складских комплексов.
Ввиду влагостойкости, не подверженности к биологическому разрушению большинства видов огнестойких теплоизоляционных материалов их с гарантией длительного срока службы применяют при монтаже снаружи ограждающих конструкций строительных объектов; внутри, в том числе в помещениях с высокой влажностью среды, имеющими категории по взрывопожарной опасности.
Достоинства и недостатки
Кроме очевидного снижения пожарной опасности строительных объектов, применение огнестойких утеплителей дает и другие преимущества:
- Увеличивается срок службы многих строительных конструкций, например, перегородок, перекрытий, без необходимости их вскрытия для замены пришедшего в негодность утеплителя, изготовленного из органических материалов.
- Более длительная, безопасная эксплуатация участков инженерных сетей, коммуникаций жизнеобеспечения объектов, защищенных огнестойкими утеплителями, в том числе проходящих транзитом через пожароопасные производственные, складские помещения.
- Использование огнестойких теплоизоляционных материалов резко снижает возможность возникновения пожара от печного оборудования.
К недостаткам можно лишь отнести несколько завышенную стоимость отдельных марок огнестойких утеплителей, однако, учитывая огромное предложение аналогичной по техническим параметрам продукции на рынке – это не проблема для заказчиков, покупателей.
fireman.club
Пароизоляционный материал – лучший способ защитить дом от влаги
Для создания комфортной атмосферы в Вашем доме вам потребуется не только утеплить его стены, но и изолировать их от влаги. Воздух внутри помещения обычно более теплый и влажный чем снаружи.
Насыщенный пар проникает в поры стен и конденсируется в виде жидкости, а влага разрушает все строительные материалы и ухудшает их физико-механические свойства. Защитить стены дома от пара помогут специальные пароизоляционные материалы.
Чаще всего пароизоляция выглядит как тонкий полимерный материал, который прокладывается между слоями других материалов в ограждающей конструкции.
Виды пароизоляционных материалов
По своему химическому составу пароизоляция выпускается в виде пленок из полиэтилена, полипропилена или мембран. Они могут быть проницаемыми или непроницаемыми для воздуха.
Полиэтиленовые пленки для пароизоляции бывают перфорированные (с мелкими отверстиями) и неперфорированные. Пленки без отверстий выполняют свою функцию хуже, потому что не обеспечивают циркуляцию воздуха в помещении и их используют значительно реже.
Серьезным недостатком полиэтиленовой пленки является ее непрочность. Более прочным материалом является армированная пленка. Достаточно часто применяют пленки с фольгой из алюминия. Такой материал защищает не только от влаги, но и удерживает тепло внутри помещения.
Пленки из полипропилена обладают большей устойчивостью к ультрафиолетовому излучению. Чаще всего такие пленки тоже делают армированными.
Пароизоляционная мембрана является самым технологичным и самым прочным пароизоляционным материалом. Мембраны часто состоят из нескольких слоев нетканого материала и пленки.
Существуют мембраны, имеющие ограниченную проницаемость (проницаемы для воздуха, но не проницаемы для пара). А так же мембраны с переменной паропроницаемостью (не пропускают влагу в сухом состоянии, но пропускают во влажном.)
На некоторые виды мембран наносят специальное покрытие из целлюлозы, которое впитывает конденсат. Сторона пароизоляционного материала с таким покрытием шероховатая на ощупь. Эту мембрану кладут сверху на утеплитель, для того чтобы она проветривалась.
По способу монтажа пароизоляция может быть рулонной и листовой. Рулонную пароизоляцию раскатывают по поверхности и закрепляют рейками, а листовую крепят к каркасу здания при помощи саморезов.
Применение пароизоляции
От влажного воздуха необходимо изолировать самые разные виды конструкций. Для каждого случая используют свой вид пароизоляции:
- Для создания комфортного микроклимата в доме, необходимо обеспечить паропроницаемость поверхности стен. Поэтому предпочтительнее всего использовать в этом случае дышащие мембраны.
- Изолировать от влаги пол можно с помощью достаточно дешевого, непроницаемого для влаги материала, который будет полностью закрыт от солнечных лучей. В этом случае можно использовать полиэтиленовую пленку.
- Для пароизоляции потолка лучше всего использовать непроницаемый для влаги материал, который на 100% убережет ваш потолок от мокрых разводов и пятен плесени. Это полипропиленовая пленка.
- Защищать от влаги кровлю лучше всего с помощью специальной мембраны. Плотная и прочная мембрана защитит вашу крышу от воздействия ветра и дождя, а так же впитает скопившийся на поверхности утеплителя конденсат.
Особенности крепления пароизоляционного материала
Способы монтажа пароизоляции:
- При утеплении фасада снаружи, пароизоляция укладывается со стороны улицы и служит одновременно гидроизоляцией для утеплителя. Так обеспечивается хорошая вентиляция мембраны для борьбы с образовавшимся конденсатом выведенным из утеплителя или осевшим из окружащей среды.
- Для пароизоляции кровли мембрану, выполняющую роль гидроизоляци, кладут поверх утеплителя.
- При устройстве не утепленной кровли, пароизоляцию укладывают под стропильными ногами, чтобы деревянные стропила не намокали.
- Если вы утепляете перекрытие под холодным чердаком, то барьер для пара нужно размещать под утеплителем, чтобы защитить утеплитель от влаги из помещения.
Правила укладывания мембраны:
- У многих пароизоляционных материалов лицевая и изнаночная сторона могут быть разными. С одной стороны на пленку может быть нанесено антиконденсатное покрытие, нетканый материал или фольга.
- Практически ко всем материалам производитель прикладывает инструкцию по монтажу, в которой подробно описана вся технология крепления пароизоляции.
- Обычно наружная сторона пленки окрашена более ярко.
Необходимость вентиляционного зазора возле мембраны:
- Для всех видов пароизоляции устраивают продух для вентиляции. Его ширина около 50 мм. Это делается для избавления от конденсированной влаги. Нельзя допускать, чтобы облицовка стены соприкасалась с мембраной.
- Для паропроницаемой мембраны необходимо делать зазор 60-80 мм с наружной стороны пароизоляции.
- Для антиконденсатной мембраны зазор делается 40-60 мм с каждой стороны пароизоляции.
- В конструкции кровли зазор для вентиляции выполняется при помощи контробрешетки, из брусков.
Виды перехлеста между полотнами параизоляционного материала:
- Вдоль края многих пароизоляционных пленок и мембран есть специальная разметка. Она показывает, каким должен быть перехлест полотен – от 10 до 20 см.
- Для пароизоляции кровли достаточный перехлест особенно важен, потому что этой конструкцией пароизоляция защищает утеплитель еще и от атмосферных осадков. Нахлест выбирается в зависимости от угла ската крыши:
- при угле до 30 градусов, требуется нахлест в 100 мм;
- при угле от 20 до 30 градусов, 150 мм;
- при угле менее 20 градусов, 200 мм.
- В ендове перехлест пароизоляции должен быть 300 мм.
- На коньке делают перехлест 200 мм.
Отдельные части мембраны нужно герметично проклеивать. Это делается при помощи липких лент из вспененного полимерного материала. Ленты могут быть двусторонними или односторонними.
Для крепления пароизоляции можно использовать строительный степлер или гвозди с большими шляпками. Также отличным крепежом являются контрейки. Не стоит использовать для крепления пароизоляции скотч, потому что он боится влаги.
Пароизоляция – очень важный элемент для любого строительства. Она нужна для того, чтобы ваша многослойная строительная конструкция долго служила. Прежде чем приступать к возведению своего дома, необходимо тщательно разобраться во всех нюансах ее устройства.
Зачем нужны и какими бывают пароизоляционные материалы, узнайте на видео:
holodine.net
какой бывает огнеупорный сыпучий или жидкий утеплитель, можно ли его применять для потолка, полов и стен, на что обращать внимание
Для внутренней и наружной теплоизоляции зданий, к пожарной безопасности которых предъявляются повышенные требования, используют негорючие и слабогорючие материалы, относящиеся соответственно к группам по горючести НГ и Г1. Этот показатель для конкретного утеплителя устанавливают по ГОСТу.
Когда необходимо использовать для утепления негорючие утеплители
Здания и объекты, для теплоизоляции которых обязательно использование негорючих утеплителей:
- автозаправочные станции;
- автосервисы;
- гаражи и подземные автостоянки;
- многоэтажные жилые дома;
- бани и сауны;
- частные дома с печным отоплением;
- здания массового посещения и др.
Теплоизоляция утеплителями из групп по горючести НГ и Г1 необходима при строительстве и ремонте любого объекта, на котором предполагается хранение огнеопасных материалов, изделий из них или постоянное присутствие большого количества людей.
По каждому конкретному зданию требования уточнять в СНиП.
Область применения
Негорючие и слабогорючие утепляющие материалы используются для теплоизоляции помещений как изнутри, так и снаружи. Их помещают в зазор между капитальной стеной и отделкой и фиксируют. Способ монтажа и крепления зависит от типа утеплителя.
Внутри
Теплоизоляционные материалы группы НГ применяют для внутреннего утепления помещения при обшивке стен гипсокартонными или гипсоволокнистыми листами, монтаже межкомнатных перегородок. Утеплитель располагают внутри каркаса — между капитальной и фальшстеной или между сторонами перегородки.
Снаружи
Негорючие утеплители используют для отделки наружных стен в следующих случаях:
- Теплоизоляция по технологии «мокрый фасад». Поверх закрепленного на стенах специальным клеем плитного утеплителя наносят штукатурку. Высохший слой окрашивают или покрывают декоративной штукатурной смесью.
- Монтаж вентилируемых фасадов. Утеплитель крепят к стене дюбелями-зонтиками под каркасом, на который навешивают выбранный вид облицовочного материала.
- Отделка фасадов кирпичом. Материал крепят или засыпают в зазор между основной и декоративной стенами.
Виды негорючих материалов
Для конкретных целей применяют различные виды негорючих теплоизоляционных материалов: жидкие, жесткие (в виде матов или рулонов), сыпучие и пористые. Все современные огнестойкие утеплители не плесневеют, не привлекают грызунов.
Жидкие
К жидким негорючим утеплителям относятся:
- Теплокраска. Это смесь, на 80% состоящая из микросфер, наполненных воздухом. Внешне она напоминает обычную густую краску или мастику. Этот утеплитель применяют если нельзя использовать традиционные материалы, в основном в регионах с мягким климатом. Коэффициент теплоизоляции 0,020 — 0,025 Вт/м*С. Одно из главных достоинств — не увеличивает нагрузку на стены и фундамент. Материал совместим с фасадными и интерьерными красками, штукатурками, не требует использования грунтовки. В продаже есть теплокраски, относящиеся к группе НГ. В их состав входят антипирены.
- Жидкий (напыляемый) пенопласт. Одно из распространенных торговых названий — пеноизол. В отличие от классического пенопласта и пенополистирола относится к слабогорючим материалам. Коэффициент теплоизоляции 0,028 — 0,047 Вт/м*С. Недостатком можно считать присутствие в составе вредных компонентов.
- Напыляемый пенополиуретан. При заказе услуги по теплоизоляции стен этим материалом уточнять группу по горючести, выбирать только Г1. Разные марки ППУ могут иметь по этому параметру показатель даже Г4 (сильногорючие). Коэффициент теплоизоляции пенополиуретана — 0,021 Вт/м*С. Достоинства — после застывания пена не выделяет вредных веществ, материал лучше выдерживает усадку, чем пеноизол.
Еще один жидкий утеплитель — напыляемая эковата. Несмотря на обязательное присутствие в составе антипиренов, этот материал к группам НГ или Г1 не относится. По сути это переработанная бумага, а огнезащитные добавки за несколько лет испаряются.
Минвата
Под этим названием понимают утеплители из стеклянных, шлаковых или базальтовых волокон в виде плит или гибких матов. Шлаковата в продаже встречается редко из-за вредности.
Таблица. Основные характеристики разновидностей минваты
Стеклянная | Базальтовая | |
Коэффициент теплопроводности, Вт/м°C | 0,030 — 0,052 | 0, 034 — 0, 038 |
Группа по горючести | НГ, Г1 | НГ |
Влагоустойчивость | Сильно впитывает воду из воздуха, влага задерживается внутри и с трудом выводится, даже в сухом помещении постепенно слеживается | Качественную базальтовую вату пропитывают гидрофобизатором, не слеживается |
Недостатки | При монтаже образуется множество мелких острых осколков, нужны респиратор, защитные очки, спецодежда | Более высокая цена |
Опасность для здоровья | В состав могут входить фенолформальдегидные смолы | Дешевые марки тоже содержат фенолформальдегидные смолы, дорогие делают на более безопасном биополимерном связующем |
Для повышения влагостойкости стекловолоконной и каменной ваты их покрывают слоем фольги. Эти разновидности минваты стоят дороже, но прослужат дольше.
Сыпучие
К сыпучим (засыпным) негорючим утеплителям относятся:
- Керамзит. Это смесь гранул из обожженной глины, абсолютно негорючий и безопасный природный материал. Недостаток — сравнительно высокий коэффициент теплопроводности (0,15 — 0,18 Вт/м°C).
- Перлит. Это смесь гранул из особой вулканической горной породы, похожих формой и блеском на жемчужины. Материал может применяться в строительстве в естественном виде, но чаще используют вспученный. Коэффициент теплопроводности 0,041 — 0,050 Вт/м°C. Недостаток перлита — хрупкость (разрушается даже в процессе транспортировки).
- Вермикулит. Это слоистый материал, продукт вторичного изменения слюды. Коэффициент теплоизоляции 0,050 Вт/м°C. Вермикулит прочнее чем перлит, меньше впитывает влагу, тоже чаще используют вспученный. Недостаток — возможно наличие примесей асбеста (может вызывать появление раковых заболеваний). При покупке просить у продавца документы, подтверждающие чистоту материала.
Эти утеплители для теплоизоляции стен применяют сравнительно редко из-за сложности выполнения работы.
Пористые
К пористым негорючим теплоизоляционным материалам относят прежде всего пеностекло. Это расплавленная и вспененная газообразователем стекломасса. Формы выпуска: плиты, блоки, щебень, гранулы. Коэффициент теплоизоляции 0,04 — 0,08 Вт/м°C. Достоинства: безопасность, прочность.
Условно к негорючим пористым утеплителям можно отнести стеновые блоки низких марок плотности (до D400 — 400 кг/м3) из ячеистых бетонов: газосиликат, газо-, пено- и газопенобетон. Все они отличаются полной негорючестью. Чем ниже марка, тем выше теплоизоляционные свойства. Блоки плотностью до 400 кг/м3 непригодны для возведения несущих стен, но подходят для утепления и монтажа противопожарных перегородок.
Как отделать огнеупорными материалами стены, потолок и пол
Способы отделки негорючими теплоизоляторами:
- Утепляющие краски наносят так же, как и обычные, толщина слоя 3 мм. Этот вид теплоизоляции чаще всего сочетают с другими материалами.
- Напыляемые утеплители (ППУ и пеноизол) наносят с помощью специального оборудования. К стенам крепят каркас под обшивку отделочным материалом. Изоляцию помещают между стойками обрешетки.
- Плиты и рулоны минваты к стенам клеят или фиксируют дюбелями-зонтиками. При обшивке стен гипсокартоном или изготовлении перегородок маты помещают между стойками каркаса враспор. На горизонтальные поверхности плиты просто стелют. Если речь идет о полах по лагам, то подгоняют шаг между ними под ширину рулона утеплителя.
- Сыпучие материалы засыпают в зазор между основной и облицовочной стеной, например при отделке дома из газоблоков кирпичом. При заливке бетонного пола из них выполняют один из слоев «пирога». При монтаже деревянного пола по лагам утеплитель помещают в щель между основой и настилом.
- Пеностекло к отделываемым поверхностям крепят клеем, подобранным под материал, из которого они изготовлены, и дополнительно фиксируют специальными дюбелями.
Чтобы выбрать теплоизолирующий материал для конкретного случая, нужно внимательно изучить подробное описание технологии монтажа.
Особенности ухода
При отделке стен утеплителями обязательно обеспечить правильную надежную гидро- и пароизоляцию. Особенно это важно при использовании минваты. Если есть возможность доступа, примерно один раз в год слой осматривают. Возможны намокание, усадка, слеживание. Испорченные фрагменты утеплителя можно попробовать посушить, если нужный эффект не достигнут, то заменить на новые.
Полезное видео
otdelkasten.com
Негорючий утеплитель для стен – область применения и свойства
Кирпичные, бетонные дома имеют высокие эксплуатационные качества. Однако для сохранения тепла и улучшения микроклимата в доме нужно провести термоизоляцию. Она снижает затраты на отопление. Установленный слой утеплителя дополнительно помогает не допустить потери тепла зимой, снизит скорость нагрева дома летом.
Нужно чтобы слой теплоизоляции не был подвержен воспламенению. Это повышает безопасность в случае чрезвычайной ситуации. На рынке строительных материалов широкий ассортимент изоляционных покрытий.
Минеральная вата
Содержание статьи
Когда необходимо использовать для утепления негорючие утеплители
Существует ряд строений для утепления, которых нужно использовать негорючие материалы. Это выполняется в соответствии со строительными нормами и правилами, государственным стандартом. К таким зданиям причисляют:
- Автозаправочные станции, места проведения техосмотра.
- Гаражи, стоянки.
- Многоквартирные жилые строения.
- Бани.
- Частные владения с печным отоплением.
- Дома с постоянным потоком посетителей (супермаркеты, государственные организации).
Использование теплоизоляторов, относящихся к несгорающим или минимально подверженным воспламенению обязательно для хозяйственных помещений для хранения огнеопасных веществ или постоянно находятся люди.
Утепление минеральной ватой
Область применения
Теплоизоляционные утеплители класса НГ или Г1 используются для отделки помещений снаружи или внутри. Обычно их располагают между основной стеной и облицовкой. Способ монтажа зависит от вида утеплителя, его толщины, особенностей помещения.
Каменная вата
Внутри помещения
При использовании негорючих теплоизоляционных материалов для внутренних работ, они комбинируются с гипсокартонными или гипсоволокнистыми панелями, встраиваются между перегородками. Негорючее покрытие размещают на каркасе между основной и фальшстеной или частями межкомнатной перегородки. При этом можно использовать любые виды утеплителя, кроме утепления это обеспечивает шумоизоляцию.
👷♂️ Не менее важная информация по теме: Каменная вата – размеры
Снаружи
Использование негорючих утеплителей для работ над наружными стенами проводится, когда:
- Теплоизоляция устанавливается по технологии мокрый фасад. При этом плитный утеплитель крепят на стене, оштукатуривают, окрашивают. Альтернативный вариант – дополнительный слой декоративной штукатурки.
- При монтаже проветриваемых фасадов, теплоизолятор монтируется к поверхности стены дюбелями с широкой шляпкой. После монтируется каркас, на который крепится облицовка.
- При облицовочных работах кирпичом, термоизоляция крепится между основной и фальшстеной.
Виды утеплителей
Для остановки передачи тепла из одной области требуется подбирать утеплители с низким показателем теплопроводности. Значение последнего зависит от физико-химических свойств, агрегатного состояния вещества. Есть несколько основных форм, в которых выпускают теплоизоляцию: маты, плиты, рулоны.
Согласно основным характеристикам, можно условно поделить утеплители на три группы:
- Сыпучие.
- Ячеистые.
- Волокнистые.
Каждая из групп имеет несколько представителей. Среди сыпучих выделяется вермикулит, керамзит. Волокнистые – в основном разновидности минваты. Пенные или ячеистые – полимеры органических веществ. К ним относятся производные полистирола.
👷♂️Не менее важная информация по теме: Утепление внешней стены кирпичного дома
Есть класс жидких утеплителей. К ним относятся:
- Теплоизоляционная краска – вещество на 4/5 состоящее из микросфер, содержащее воздух. По консистенции похожа на краску или мастику. Может применяться там, где невозможно использовать традиционные подвиды. Особенно в регионах с теплым климатом. Отличается низким коэффициентом теплоизоляции, однако практически не повышает нагрузку на стены. Не требовательна к поверхности, не нуждается в предварительной грунтовке. Можно сочетать с фасадными красками.
- Напыляемый пенопласт или пеноизол – мало подверженная горению версия наиболее дешевого теплоизолятора. В составе есть вредоносные компоненты. Показатель теплоизоляции примерно в 2 раза выше, чем у теплокраски.
- Напыляемый пенополиуретан класса Г1. Отличается низким показателем теплоизоляции 0.021 Вт/м*с. Хорошо выдерживает усадку.
Все виды обработаны антисептическими, антипиреновыми добавками. Они полностью защищены от биологического воздействия, не привлекают грызунов. Ниже будут рассмотрены основные разновидности.
👷♂️ Не менее важная информация по теме: Утеплитель для стен бани
Минераловатная теплоизоляция
Этот вид теплоизоляции реализуется в рулонах, матах. Бывают различия по степени плотности и толщины в зависимости от маркировки. Термин минеральная вата подразумевает несколько видов, к которым относят базальтовую, шлаковую вату. Эти изоляторы отличаются характеристиками. При высоких температурах сохраняют структуру и свойства, не выделяют вредоносных веществ.
Изготавливают нагревом минералов (базальта, кварца), затем их вытягивают, получая волокна. Также используются отходы производства стекла, металлопроката, картона.
Утеплитель имеет невысокий показатель остаточной кислотности. Если использовать его вместе с металлами, может сформироваться агрессивная среда, которая повредит каркасу.
Пеностекло
Сходно по структуре и консистенции с затвердевшей мыльной пеной. Содержит много пор, относится к неорганическим ячеистым теплоизоляторам. Изготавливается под воздействием высоких температур, из измельченного стекла и каменного угля. Образуется материал, не подверженный горению. При нагреве начинает оплавляться, без выделения газа или пара. У пеностекла высокая масса, низкая механическая прочность. Пеностекло часто применяется для утепления фундаментов, стен подвальных помещений.
Пеностекло
Базальтовая вата
Этот вид минваты состоит из базальта. Популярен на рынке утеплителей. Часто применяется при строительстве бань, саун. Вата влагостойкий и термостойкий вид покрытия. Она впитывает влагу. Недостаток – цена.
Базальтовая вата
Стекловата
Стекловата – волокнистый материал, из отходов производства стекла или его боя. Есть два основных способа изготовления:
- Для создания тонкого волокна с толщиной не более 5 мкм вытягивают расплавленную стеклянную массу в волокна нужной длины.
- Если продувать волокна под высоким напором, получается грубый материал с толстыми волокнами.
Стекловата реализуется в плитах и рулонах. Плиты часто используются при монтаже вентилируемых фасадов или скатных крыш, перекрытий на чердаках или в подвалах. Рулонная стекловата применяется для теплоизоляции горизонтальных поверхностей: полов, разных перекрытий. Показатель теплопроводности стекловаты составляет от 0.03 до 0.052 Вт/м*К. В зависимости от грубости волокон есть разница в плотности от 9 до 50 кг/метр кубический.
Стекловата
Вспученный вермикулит
При обжиге натуральных водных слюд, получают сыпучий материал, с чешуйчатой фактурой – вермикулит. Это вещество практически не содержит вредоносных примесей, поэтому полностью экологически безопасен. Вспученный вермикулит используют, как несгораемый теплоизолятор для строительства малоэтажных зданий, для утепления чердаков, полов, стен.
Основная проблема при работе с вермикулитом – его способность впитывать влагу. Использование вермикулита требует установки пароизоляции, поскольку он впитывает влагу в несколько раз больше, чем весит сам. Это улучшает теплопроводность, как следствие ухудшает теплоизоляционные свойства.
Вспученный вермикулит
Советы экспертов по выбору утеплителя
Большинство специалистов сходятся во мнении, что теплоизоляторы неминерального происхождения лучше использовать для фундаментов частных домов. Фасады, стены и крыши лучше утеплять волокнистыми материалами. Его толщина выбирается исходят из многих факторов: климатических особенностей региона, типа и толщины стен, наличия или отсутствия внутреннего утепления.
Базальтовая вата с плотностью от 135 до 150 килограммов на метр кубический подходит для монтажа влажного фасада. Для проветриваемого берут более легкий материал. Оптимальная толщина утеплителя до 50 мм, плотность до 90 кг/м 3. Для крыши в пределах 30-50 кг/м 3.
👷♂️Не менее важная информация по теме: Утепление полиуретаном стен
Как отделать огнеупорными материалами стены, потолок и пол
Методы отделки:
- При использовании красок и лаков способ нанесения стандартный. Толщина до 3 мм.
- Напыляемые виды наносятся с помощью технологического оборудования. На стену крепят обрешетку, в секции которой напыляется пенополиуретан.
- Плитные и рулонированные типы крепятся механически или на клей. Если стены внутри обшиваются листовыми материалами, маты располагают между стойками каркаса. На полы стелют листы.
- Сыпучие материалы насыпаются внутрь зазора между основной стеной и облицовкой. Если планируется заливать пол бетоном, требуется сформировать из него один общий пирог. Если монтировать деревянный пол, размещают его между фундаментом и настилом.
- Пеностекло садится на клей ко всем поверхностям, которые были предварительно подготовлены. Для надежности крепится специальными дюбелями.
Особенности ухода
Если отделывать стены утеплителями, следует обеспечить надежную изоляцию материала от пара и влаги. Это важно в случае использования минеральной ваты. Если при монтаже осталась возможность доступа, требуются регулярные проверки. Иногда происходят промокание, усадка или другие эффекты. При этом испорченные фрагменты удаляются и заменяются новыми.
Огнестойкое покрытие требуется в нескольких случаях. Оно обеспечивает повышенную безопасность при авариях. Чтобы достичь устойчивости к огню, можно использовать несколько видов теплоизоляторов: вспененные, волокнистые, сыпучие. Основные – волокнистые виды из-за распространенности и цены. Для теплоизоляции оправдано использование базальтовой ваты или эковаты.
Вконтакте
Одноклассники
gipsohouse.ru
Особенности применения паронепроницаемого утеплителя
Современное строительство имеет явно выраженное направление повышения комфортности проживания.
Это не только высокий уровень обустройства жилых помещений, оптимальная планировка и долговечный внутренний декор, но также и стабильность комфортного микроклимата при значительных перепадах наружных и внутренних температур.
Оптимальный микроклимат в доме: мечта или реальность?
Листовой пенополиуретан
Большая часть страны находится в сложных климатических условиях, поэтому разработчики архитектурных проектов уделяют особое внимание теплоизоляции жилых и промышленных объектов с дальнейшей перспективой минимальных затрат на отопление. Комфортная среда – это оптимальный диапазон температур, влажности, отсутствие шумовых раздражителей и других факторов, отрицательно влияющих на здоровье и психоэмоциональное состояние человека.
Комфортная температура в помещениях может поддерживаться благодаря повышенному расходу энергоносителей или посредством обустройства эффективной, постоянно действующей теплоизоляции с помощью утеплителя Роквул.
Экономически привлекателен второй вариант, поскольку стоимость обогрева и кондиционирования имеет устойчивую тенденцию к росту.
Ассортимент современных утеплителей включает в себя большой перечень теплоизоляционных материалов, обладающих разными свойствами – в частности, паропроницаемостью или ее отсутствием. В последнюю группу входят недорогие утеплители на основе вспененных полимеров: пенополистиролы, пенополиуретаны и пенополиэтилены.
Недостатки теплоизоляции на основе вспененных полимеров
Пенополиэтилен
Эти материалы производятся под разными названиями, но эксплуатационные их характеристики весьма похожи. Как правило, закрытоячеистая структура пенополистирола экструзионного, цена которого на сайте нашей компании вас непременно обрадует, способствует улучшению влаго- и морозостойкости, но в то же время создает непроходимый барьер для водяных паров. Как при внутреннем, так и при наружном утеплении имеются отрицательные явления.
- В первом случае – это значительный дискомфорт проживания вследствие возникновения «эффекта термоса». Из-за отсутствия газо- и парообмена через строительные конструкции воздух в жилых помещениях переувлажняется до дискомфортного уровня: отмечается существенное ухудшение самочувствия людей и снижение работоспособности.
- Такое утепление, прошедшее основательное тестирование в скандинавских странах, возможно использовать при наличии центрального кондиционера или постоянно действующей эффективной вентиляции.
Внимание! Вариант наружного утепления также особых преимуществ не имеет, поскольку конденсатная влага, не имея выхода, аккумулируется внутри стен и перекрытий: сырые стены сокращают срок службы внутреннего декора и в большей степени подвержены разрушающим факторам.
Проблема удаления конденсата решается несколькими способами, из которых наиболее эффективный – это обустройство щелевой вентиляции, обеспечивающей постоянное течение воздуха через специальные отверстия. Такая конструкция не может не отразиться на сложности системы утепления и ее стоимости – естественно, в сторону увеличения.
Только качественное утепление спасет вас от непогоды — мы поможем вам в этом!
Применение щелевой вентиляции
При утеплении дома вспененными полимерами помните о необходимости создания щелевой вентиляции
Щелевая вентиляция в улучшенном варианте применяется в системах навесных вентилируемых фасадов.
В умеренном климате утепление фасадов загородных домов производится с помощью минераловатных панелей, которые снижают эффективность утепления даже при незначительном увлажнении. Проблема частично решается гидрофобизированием их структуры.
В регионах с холодным климатом специалисты рекомендуют использовать для утепления навесных фасадных систем пенополистирольные утеплители.
Они обладают отличной влаго- и морозостойкостью, сохраняют рабочие свойства при эксплуатации в условиях высокой влажности.
Таким образом, паронепроницаемость утеплителей является основным ограничивающим применение фактором, который не компенсируется положительными свойствами пенополимеров – небольшим весом, удобным монтажом и доступной стоимостью.
Приобрести теплоизоляцию из экструдированного пенополистирола лучших брендов вы можете прямо сейчас!
kupi-uteplitel.ru
Паропроницаемость теплоизоляции. Должен ли утеплитель «дышать»? / Строительные материалы / Статьи
Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.
Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.
Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.
Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?
Аргументы «за» и «против»
Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.
Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:
1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.
Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.
2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).
* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.
Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?
Чем опасна высокая паропроницаемость утеплителя?
В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).
Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю
Рис.2 Точка росы в плитах ЭППС в домах каркасного типа
Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?
Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.
Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».
Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).
Во-вторых, вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».
Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.
В-третьих, скапливание конденсата и увлажнение утеплителя создает питательную среду для развития грибков, плесени и других вредных бактерий, которые разрушают конструкцию и, как известно, наносят вред здоровью человека.
Таким образом, мы пришли к выводу, что высокая паропроницаемость теплоизоляционного материала не только не является его достоинством, но также может привести к ряду негативных последствий.
Мы надеемся, что данная статья поможет Вам сделать правильный выбор. И, в будущем, оценивая качество теплоизоляции, Вы будете ориентироваться на такие действительно важные факторы, как низкая теплопроводность, прочность, экологичность и низкая паропроницаемость.
Утеплитель для стен: какой лучше выбрать
Авг
06/13
Катастрофическая нехватка энергетических ресурсов и их дороговизна привели к развитию различного рода энергосберегающих технологий. В своем желании экономить население Земли достигло неимоверных высот, и лозунг «Утепляйся, как можешь!» был воспринят буквально практически всеми разумными представителями человеческой расы.
Одним из наиболее распространенных способов сократить использование природных ресурсов стало утепление стен. Для этого применяются разные материалы и технологии, о которых мы и поговорим сегодня на страницах сайта «Дом Мечты», подробно изучив все их виды и принципы использования, а также выбрав лучший утеплитель для стен.
Виды утеплителей для стен
Условно все виды утеплителей для стен, позволяющие выполнить качественную теплоизоляцию строения, можно разделить на внутренние и наружные материалы. Отличаются они друг от друга способностью к паропроницаемости – если для внутреннего утепления стен можно применять исключительно паропроницаемые утеплители, то вот для наружных работ с успехом используются и те и другие.
Материалы для наружного утепления стен
Наружные утеплители для стен дома отличаются от внутренних и другими требованиями – как правило, процесс теплоизоляции зданий совмещают с декоративной отделкой фасада. А это в некоторых случаях требует достаточной прочности материала. Как нельзя лучше всем этим потребностям отвечают пенопласт или полистирол, базальтовая плита и разновидности теплой штукатурки. Но обо всем по порядку, и начнем с пенопласта.
- Пенопласт или полистирол. Этот наружный утеплитель для стен можно назвать самым распространенным – его характеристики позволяют не только выполнить полноценную теплоизоляцию дома, но и отделать фасад декоративной штукатуркой. Утепление стен пенопластом на сегодняшний день является наиболее дешевым. Как правило, для тепло- и звукоизоляции домов используется пенопласт толщиной не менее 50мм – по своей теплопроводности такая защита здания приравнивается к кирпичной кладке толщиной в полтора кирпича. Пенопласт или полистирол наклеивается на стены дома, дополнительно крепится «зонтиками», после чего армируется сеткой и штукатурится тонким слоем. После высыхания армирующего слоя на поверхность стен наносится декоративная штукатурка.
Утепление стен пенопластом снаружи дома
- Базальтовый утеплитель для стен. В отличие от пенопласта, базальтовая плита может быть использована как для наружного, так и для внутреннего утепления. Базальтовый утеплитель для стен обладает низкой теплопроводностью и высокой плотностью. Монтироваться он может по-разному – в одном случае его приклеивают (как и пенопласт) с последующей армировкой и отделкой декоративной штукатуркой, в другом случае его закладывают за вентилируемый фасад, например, под сайдинг. Если речь идет об использовании базальтовой плиты в качестве внутреннего утеплителя для стен, то его закладывают за гипсокартонную обшивку.
Базальтовый утеплитель для стен
- Теплая штукатурка. Среди положительных качеств этого материала для утепления стен можно отметить высокую прочность поверхности, которую, в отличие от предыдущих материалов, очень трудно чем-либо повредить. По сути, материал для утепленной штукатурки является ничем иным как обычным цементно-песчаным или известковым раствором с добавлением всевозможных природных и полимерных наполнителей, уменьшающих теплопроводность исходного состава. Теплопроводность отделанных таким раствором стен напрямую зависит от используемых наполнителей и их количества – в некоторых случаях результат оказывается просто превосходным. Тонкий слой толщиной в 1-1,5см в состоянии заменить пятидесятимиллиметровый пенопласт.
Теплая штукатурка для стен снаружи
Материал для внутреннего утепления стен
Как и говорилось выше, внутри помещения нужно применять исключительно паропроницаемые материалы. К ним можно отнести минеральные утеплители для стен и природные (например, пробковые обои).
- Минеральная вата. Этот материал является наиболее распространенным и применятся для внутреннего утепления стен практически повсеместно. Недостатком такого способа теплоизоляции помещений является необходимость создания гипсокартонной или пластиковой обшивки, которая, как правило, забирает у помещения львиную долю пространства. Свои высокие технические характеристики минеральная вата показала в качестве утеплителя для стен каркасного дома – в этом случае она вкладывается внутрь стены и никакого пространства не ворует.
Минеральная вата может производиться в двух вариантах – ее изготавливают либо в виде отдельных плит сравнительно небольшого размера, либо в рулонах. Назначение у них одно, а вот применяются различные виды минеральной ваты в зависимости от условий монтажа по-разному. К примеру, рулонный утеплитель для стен удобно использовать при утеплении больших площадей, а этот же материал, изготовленный в виде плит, замечательно подходит для работ с небольшими помещениями. По большому счету, разницы между ними никакой нет – тот же рулон можно порезать на необходимые части обыкновенным ножом.
Утепление стен минеральной ватой фото
- Пробковые обои. Их преимущество заключается не только в экологичности, но и в универсальности – они одновременно служат и утеплителем для стен, и декоративной отделкой. Хотя производители утверждают, что пробка является отличным утеплителем, все же ввиду тонкого слоя теплоизоляционные свойства этого материала оставляют желать лучшего.
Пробковые обои для стен
Альтернативное утепление стен
Строительство новых домов производится уже с учетом энергосберегающих технологий и в дополнительном утеплении такие дома, как правило, не нуждаются.
Сделать строящиеся стены теплыми можно разными способами, но наиболее распространенным вариантом является монтаж кирпичной стены с утеплителем.
Создается некое подобие слоеного пирога – снаружи здания укладывается декоративный кирпич, за ним устраивается слой пенопласта или базальтового утеплителя, а снаружи строения кладка выполняется кирпичом худшего качества. Впоследствии она штукатурится, шпаклюется и покрывается декоративным материалом. Отличительной особенностью такого утепления стен является отсутствие необходимости в декоративной отделке фасада.
Утеплитель между кирпичами
Среди подобных методов создания теплых стен встречается их возведение из пенопластовых блоков. По форме и конструкции они напоминают шлакоблок, полости которого армируются и заполняются бетоном. Таким образом получаются прочные, выдерживающие большие нагрузки и, одновременно, теплые стены дома.
Блоки из пенопласта для строительства
Ну и в заключение этой темы, которая позволит вам выбрать лучший утеплитель, хочу акцентировать внимание на так называемых жидких утеплителях для стен. К ним относят жидкий пенопласт и такую же керамическую изоляцию. В принципе, эти технологии довольно эффективные, но для самостоятельной теплоизоляции дома не подходят – для их нанесения требуется специальное оборудование.
Жидкий утеплитель для стен
В общем, как бы то ни было, а приобрести качественный утеплитель для стен на сегодняшний день не составляет никакого труда. Гораздо сложнее правильно определиться с его выбором и не ошибиться с теплоизоляционными качествами. А главное, если вы собираетесь выполнять самостоятельное утепление, то обратите внимание на удобство и простоту в работе с этим материалом.
Автор статьи Владимир Белов
Минеральная вата — лучший паропроницаемый утеплитель
Минеральные ваты в современном строительстве используются повсеместно. Благодаря своим замечательным свойствам, они обеспечивают долгий и беспроблемный срок службы утеплителя. Когда-то, в советские времена, для утепления широко использовалась стекловата. Она раздражала кожу, со временем подвергалась усадке.
В современном строительстве появилось куда больше утеплителей в виде ваты, они имеют куда лучшие эксплуатационные свойства: не горят, не впитывают воду, легко монтируются.
Минеральная вата – волокнистый теплоизоляционный материал, производство которого основано на нагревании горных базальтовых пород до температуры порядка 15000°C. Еще одно название данного утеплителя — каменная вата. Материал не горит в открытом огне (при температурах до 1000 градусов), однако после сильного нагревания теряет свои отличные теплоизоляционные свойства в связи с разрушением связующих веществ.
Материал отличается отличными показателями по тепло- и звукоизоляции. Еще один важные недостаток — минвата не усаживается в процессе эксплуатации, т.е. не будут образовываться мостики холода.
Минеральная вата выпускается в виде плит или рулонов. Минвата разных марок и производителей может отличаться:
· по коэффициенту теплопроводности
· по степени паропроницаемости (чем больше, тем лучше)
· по степени усадки (в идеале не должно быть усадки)
· по способности впитывать влагу (чем меньше, тем лучше)
Для защиты минваты от влаги используются специальные водоотталкивающие составы – гидрофобизаторы, которые не дают вате впитывать влагу. Дело в том, что намокший утеплитель перестает работать как надо, т.е. запросто запускает холод в дом. Вот почему защите минеральной ваты от воды и водяных паров следует уделять особое внимание.
В России наибольшее распространение получили минеральные ваты следующих производителей:
ROCKWOOL (Роквул)
Isorock (изорок)
Ursa (Урса)
Насколько важен параметр — паропроницаемость в современных видах утепления
Если открыть любую информационную брошюру или рекламную статью во всемирной паутине, которые дают характеристики ватным утеплителям, обязательно упоминается такое свойство этого материала, как отличная паропроницаемость. Этот параметр постоянно связывают с понятием «дышащих стен», около которых на многих строительных площадках и форумах постоянно возникают яркие споры и бесконечные дискуссии.
Где же истина?
Какой сайт ни возьми, везде производители расхваливают высокую паропроницаемость ватных утеплителей, делая акцент на том, что данный материал создаёт оптимальный микроклимат в жилых комнатах и обеспечивает так называемое «дыхание» стеновых конструкций.
Пароизоляционная прослойка – важное свойство для качественного утепления
Вместе с тем многие производители ватного материала не отрицают такой аргумент, что пароизоляционная прослойка – важный и неотъемлемый составляющий элемент любого строения, в котором используется пенополиуретан или похожая форма теплоизоляции. В этом нет ничего странного, потому что соприкосновение гигроскопичной теплоизоляции с молекулами воды способствует намоканию защитного изделия. В результате получается значительное повышение коэффициента теплопроводности.
Хорошую паропроницаемость ватных утеплителей скорее можно отнести к недостаткам, чем к достоинствам. Некоторые изготовители такой теплоизоляции уже неоднократно пытались акцентировать внимание общественности на данном моменте. В качестве аргумента они используют мнение авторитетных учёных, а также опытных инженеров и мастеров в сфере современной строительной отрасли.
Воздухопроницаемость в утепление — больше отрицательное свойство, чем положительное
К примеру, известный учёный К. Ф. Фокин, грамотный и авторитетный гуру в сфере теплофизики, высказывает такую точку зрения, что, исходя из теплотехнических параметров, воздухопроницаемость ограждающих элементов скорее отрицательное свойство, а не положительное. Обычно зимой при движении атмосферы изнутри помещения наружу происходят сверхнормативные теплопотери ограждений и охлаждение самих комнат. А при движении атмосферы снаружи вовнутрь происходит отрицательное воздействие на влажностный параметр наружного ограждения, и, как результат, образуется точка росы.
Утеплитель, который подвержен воздействию влажной среды, сам нуждается в дополнительных мерах защиты, в ином случае теплоизоляционные параметры материала просто не способны обеспечить свою главную задачу – сохранение тепла и оптимального микроклимата внутри помещений. Потребителям необходимо учитывать ещё один неприятный момент. Такой намокший утеплитель представляет собой идеальную почву для развития различных вредных микроорганизмов, становится рассадником патогенных грибков и плесени. Отсюда можно сделать вывод, что применение такого материала может не только отрицательно сказаться на здоровье обитателей дома, но и может привести к разрушению сопутствующих материалов, с которыми он контактирует.
Необходимо акцентировать внимание на том, что качественная теплоизоляция должна иметь и соответствовать таким параметрам, как устойчивость к влаге, безвредность и нетоксичность материала для человека и окружающего пространства, минимальный коэффициент теплопроводности и низкая паропроницаемость. Использование продукции, которая соответствует таким параметрам, не повлияет на стены, и они не смогут «дышать». Однако их применение позволит эффективно исполнять своё прямое назначение – сохранение оптимального микроклимата во всём доме и обеспечение качественной защиты от неблагоприятных факторов агрессивной внешней среды.
что лучше для утепления фасада?
Для утепления фасадов малоэтажных домов чаще всего используется минеральная вата или пенополистирол. Материалы обеспечивают эффективную теплоизоляцию, удобны в работе, экономичны, но их характеристики различны. Эта разница определяет рекомендации по выбору конкретного материала при устройстве фасада.
Теплопроводность
Это — главный критерий, который определяет эффективность утепления фасада. Минеральная вата и пенополистирол имеют сопоставимые характеристики теплопроводности при одинаковой толщине слоя утепления. Тем не менее пенополистирол обеспечивает более эффективное утепление. Воздух, обеспечивающий теплоизоляцию, внутри материала находится в замкнутых ячейках. При разнице температур не происходит конвекции, нет переноса тепла. Минеральная вата имеет открытую структуру (воздух находится между волокнами) и конвекция возможна. Частично эту проблему решает штукатурный слой, если он наносится на поверхность минераловатных плит. Если наружный слой фасадной системы — облицовка, энергоэффективность пенополистирола будет более высокой.
Паропроницаемость. Утеплитель должен пропускать влажные испарения со стороны помещений, не задерживать их, не накапливать влагу. Минеральная вата пропускает пар в разы лучше в сравнении с пенополистиролом. С другой стороны, отдельные производители улучшают паропроницаемость пенополистирольных плит, повышают ее. Так, плиты линейки ТЕХНОПЛЕКС (ТЕХНОНИКОЛЬ) имеют паропроницаемость 0,014 мг/(м.ч.Па), что всего в два раза меньше среднего показателя для минеральной ваты.
Паропроницаемость важна, если все слои фасадной системы выполнены из проницаемых материалов. В этом случае использование утеплителя с низкой паропроницаемостью будет провоцировать увлажнение фасадной конструкции (пар будет конденсироваться, а конденсат будет оставаться внутри системы). Если в конструкции фасада есть непроницаемые слои, лучше использовать пенополистирол. Применение минеральной ваты в этом случае неэффективно: пар будет накапливаться внутри нее, конденсироваться, увлажнять слой утеплителя. При использовании минераловатного утеплителя дополнительно со стороны стен выполняют слой пароизоляции, а внутри помещений обустраивают эффективную систему вентиляции, чтобы уровень влажности воздуха не повышался.
Акустический комфорт. Минеральная вата имеет более высокий показатель звукоизоляции, но и пенополистирол хорошо изолирует от наружных звуков. С точки зрения акустического комфорта у минеральной ваты есть преимущество только в случае, если дом расположен рядом с оживленной дорогой или в шумном районе.
Пожаробезопасность. Выше у минеральной ваты — материал не горит, выдерживает нагрев до 1000°C. Пенополистирол может плавиться, пламя распространяется по его поверхности, при горении он выделяет едкий дым.
Монтаж. Плотность, прочность выше у плит из пенополистирола. Материал легко нарезается, его поверхность можно фрезеровать самостоятельно. Минераловатные плиты не такие прочные (зависит от плотности материала), но более упругие и могут устанавливаться враспор (если утепление выполняется внутри обрешетки). При монтаже в обоих случаях инженеры компании «Вестмет» рекомендуют использовать клей или специальные монтажные составы для крепления на основании и заделки швов, стыков. Дополнительно выполняют механическое крепление на пластиковые дюбели. Работать с пенополистиролом удобнее (он меньше весит, не пылит, не ломается), но и минераловатные плиты можно приклеивать на основание в одиночку (вес одной плиты без клеевого слоя — 1,5-2 кг).
Экологичность. Показатели одинаковы для обоих материалов: они не содержат, не выделяют токсичных или потенциально опасных веществ.
Срок службы. Составляет около 50 лет для обоих материалов. На практике определяется условиями эксплуатации. Пенополистирол не должен находиться под прямыми солнечными лучами (разрушается от их действия). Минеральная вата должна быть защищена от увлажнения (при намокании теплопроводность повышается и не восстанавливается полностью даже после полного высыхания).
Цена. Примерно одинакова с учетом толщины и площади теплоизоляционного слоя, дополнительных материалов. Оценивая стоимость утепления, нужно принимать во внимание характеристики всей фасадной системы, так как утеплитель подбирается с учетом ее конструкции.
Использование утеплителя в разных фасадных системах
Вентилируемый фасад. В его составе на слой теплоизоляции не действуют механические нагрузки, и поэтому плотность, упругость и прочность не имеют значения. При этом важна паропроницаемость и пожаробезопасность. В составе таких систем компания «Вестмет» рекомендует использовать минераловатные утеплители (необязательно максимальной плотности, но желательно гидрофобизированные).
Штукатурная система. Утеплитель выбирают по характеристикам основания (материалу стен). Если оно является паропроницаемым (дерево, пенобетон, газобетон и т.п.), то теплоизоляция также должна быть паропроницаемой. Если паропроницаемость стен низкая, возможно использование пенополистирола при условии качественного монтажа (надежного крепления, правильного обрамления проемов, использования качественных клеевых и штукатурных смесей). Для утепления стен из дерева (в составе любой фасадной системы) используется только минеральная вата.
Трехслойные стены. В составе такой фасадной системы слой утеплителя располагается внутри стены, а доступ к нему затруднен. Теплоизоляция не должна давать усадку, деформироваться. Если стена кирпичная, паропроницаемость не так важна. Если стены из дерева, слой теплоизоляции должен быть паропроницаемым. Для таких конструкций используется пенополистирол (исключение — деревянные стены) или гидрофобизированная минеральная вата высокой плотности (желательно устройство дополнительного слоя пароизоляции).
Паропроницаемая изоляция | Понимание диффузии пара в стеновых конструкциях по направляющим
Сценарий разделенной изолированной стены показан на рисунке ниже в зимних условиях в холодном климате.
Схематическое вертикальное сечение
раздельной изолированной стены, расположенной в холодном климате,
, показывающее отвод пара наружу через стену
с замедлителем парообразования класса III внутри.
Паропроницаемая изоляция из минеральной ваты размещена снаружи обшивки.Это приводит к утеплению пространства стойки и внешней обшивки — чем больше наружная изоляция, тем теплее полость и обшивка. Не использовался ни внутренний, ни внешний пароизоляционный материал, хотя может потребоваться замедлитель парообразования класса II или III для предотвращения конденсации или возникновения высоких уровней относительной влажности, в зависимости от толщины внешней изоляции и градиента давления пара (ожидаемые внутренние и внешние условия ). Для умеренно холодного климата и большинства внутренних условий в коммерческих зданиях достаточно установить несколько дюймов минеральной ваты за изолированной 6-дюймовой стеной с каркасом, чтобы обеспечить хорошие характеристики при использовании в интерьере замедлителя парообразования класса III (латексная краска). гипсокартона.Под хорошими характеристиками обычно понимается поддержание относительной влажности оболочки ниже 80%. Для зданий с высоким уровнем внутренней влажности, таких как бассейны или музеи, пароизоляция класса I или II, скорее всего, все равно потребуется.
Разница давления пара от внутреннего к внешнему в этом сценарии такая же, как и в предыдущих случаях, и не зависит от внешней изоляции; однако температура внутри полости стойки выше, и, следовательно, относительная влажность оболочки не увеличивается так сильно.В результате внутри полости не образуется конденсат, и пар без вреда проходит через оболочку и паропроницаемую изоляцию. Относительная влажность в полости за оболочкой будет зависеть от коэффициента изоляции и от скорости, с которой происходит высыхание оболочки. Следовательно, чем выше паропроницаемость обшивки и изоляции, тем ниже относительная влажность внутри полости.
Поскольку температура обшивки повышается, снижается риск конденсации утечки воздуха, что дополнительно повышает долговечность этой стены.При рассмотрении диффузии пара и смачивания утечкой воздуха единственный риск повреждения из-за влаги возникает из-за внешней утечки. Однако, поскольку изоляция поддерживает теплоизоляцию, она может высыхать быстрее, и в этом стеновом блоке влага будет высыхать как внутрь, так и наружу за счет диффузии пара через относительно паропроницаемые материалы.
BA-1313: Влагостойкость с паропроницаемой изоляционной оболочкой
Краткое содержание
Изоляция внешней оболочки — эффективная стратегия увеличения общего R-значения стеновых сборок; другие преимущества включают уменьшение эффекта теплового моста и повышение влагостойкости построенного узла.Паропроницаемая внешняя изоляция, такая как минеральная плита или пенополистирол, является одним из таких продуктов, которые можно использовать для достижения этих преимуществ. Однако существует неопределенность в отношении влияния поступающей внутрь влаги и взаимодействия повышенных температур оболочки на влагостойкость здания.
Влага, поступающая внутрь, вызывает серьезную озабоченность только тогда, когда влажная влага облицовка, накапливающая влагу, подвергается воздействию повышенного уровня солнечного излучения. Повышенные температуры облицовки создают высокое давление пара, в результате чего влага проникает в стенную конструкцию.Для уменьшения попадания влаги внутрь достаточно использовать водостойкий барьер с низкой проницаемостью (WRB). Однако это также препятствует вытеканию влаги наружу. Сложность возникает, когда во время отопительного сезона вытекание влаги сдерживается WRB, что может привести к конденсации. Альтернативами минимизации накопления влаги являются либо повышение температуры поверхности оболочки (с использованием внешней изоляции), либо обеспечение высыхания оболочки наружу.Чтобы решить эти проблемы, Building Science Corporation (BSC) провела серию гидротермальных моделей для городов, представляющих ряд различных климатических зон (климатические зоны Министерства энергетики США 1, 3, 4, 5 и 7). Параметрическое исследование было проведено для оценки диапазона воздействия различных уровней внешней изоляции (0 дюймов, 1 дюйм, 2 дюйма, 4 дюйма минеральной плиты, R4 на дюйм) и проницаемости (0,1, 1, 10, 50 перм. WRB. Другие модулируемые переменные включают наличие внутреннего пароизолятора (полиэтиленовый лист, крафт-бумага), тип структурной обшивки (фанера или OSB) и скорость воздухообмена зазора за кирпичной облицовкой (1-4 воздухообмена в час).
Команда обнаружила, что проницаемость WRB в диапазоне от 1 до 10 допускает достаточное регулирование поступающей внутрь влаги, в то же время обеспечивая сушку наружу во всех климатических зонах, от 1 до 7, с внешней изоляцией не менее 1 дюйма (R4 ). Однако WRB с очень низкой проницаемостью (менее 1 перм.) Не следует использовать, если не предусмотрено 1 дюйм или более внешней изоляции. Команда рекомендует использовать не менее 2 дюймов внешней изоляции в климатических зонах 6 и 7. Высокопроницаемые WRB (50 проницаемостей) не следует использовать с паропроницаемой внешней изоляцией с облицовкой резервуаров, которые подвергаются повышенному уровню дождя. .Контроль внутреннего пара с низкой проницаемостью приводит к повышенному содержанию влаги (MC) обшивки за счет улавливания поступающей внутрь влаги. Следует избегать использования внутренних пароизоляционных слоев с низкой проницаемостью.
Раздел 1.0 содержит полное описание исследовательского проекта и обоснование исследований, а также их стоимость. Раздел 2.0 подробно описывает метод исследования BSC, подход, ключевые вопросы исследования, которые были изучены, и процедуры, используемые для анализа проблем.Раздел 3.0 описывает анализ, который будет завершен, а Раздел 4.0 суммирует результаты.
1 Постановка проблемы
1.1 Введение
Влагостойкость стен с более высокими значениями R для полости с использованием проницаемой изоляции, особенно в домах с более низкой скоростью воздухообмена, изучена плохо. Теоретически ожидается, что более высокий риск увлажнения из-за утечки воздуха и снижение возможностей диффузионного высыхания увеличит риск влажности (Straube & Smegal, 2009), но для более точной количественной оценки этого риска имеется мало исследований.Добавление изоляционной оболочки к существующим стенам с этими характеристиками является одним из способов дальнейшего повышения термического сопротивления этих сборок. Однако по другим причинам эти внешние изолирующие обшивки могут снизить возможность высыхания сборки наружу. Изоляционная оболочка доступна в диапазоне проницаемости от очень высокой (т.е. более 70 перм. Допуска США) до очень низкой (т.е. менее 0,1 перм. Существует необходимость в дальнейших исследованиях, чтобы определить обстоятельства, при которых паропроницаемая изоляционная оболочка, определяемая как имеющая проницаемость более 5 перм (IRC, 2012) (например, минеральная вата, стекловолокно), будет предпочтительнее, чем изоляционная оболочка с более низкой проницаемостью. продукт.Это исследование также включает рассмотрение влияния нескольких распространенных типов облицовки, таких как виниловый сайдинг, штукатурка, дерево, фиброцементный сайдинг и кирпич.
Самая большая проблема, связанная с паропроницаемыми изоляционными оболочками, — это поступающая внутрь влага, вызванная солнечным излучением, попадающим на смоченную влагонакопительную облицовку, проблема, которая возникает в любом климате. Когда смоченная облицовка резервуара подвергается воздействию повышенного солнечного излучения, за поверхностью оболочки создается высокое давление пара.Это высокое давление пара приводит к наружной сушке, но также создает приток пара внутрь, особенно если в помещении кондиционируется с более низким давлением пара. Паропроницаемость атмосферостойкого барьера (WRB), а также любой структурной обшивки (например, OSB, фанера и т. Д.) Может ограничивать приток пара внутрь, но степень ограничения пара неизвестна, и влияние на влагостойкость стены сборка не была определена количественно в таких обстоятельствах. Сложность возникает, когда WRB с низкой паропроницаемостью используется в холодном климате, где могут возникать потоки пара наружу.Низкопроницаемый WRB без изолирующей оболочки с паропроницаемой изоляцией полости приводит к пониженным температурам оболочки, что может привести к конденсации. Чтобы смягчить это, необходимо либо повысить температуру оболочки за счет использования внешней изоляции, либо использовать более паропроницаемый WRB, чтобы обеспечить высыхание наружу. Однако идеальный диапазон проницаемости WRB и внешней изоляции не определен или не понят.
В настоящее время существует ряд экономически эффективных вариантов модернизации существующего фонда зданий, но они выходят за рамки данного проекта.Добавление внешней изолирующей оболочки часто обходится слишком дорого; однако снятие облицовки является необходимым шагом для доступа к оболочке. Только избранные обстоятельства требуют добавления внешней изоляции: поврежденная облицовка, требующая замены (при этом добавление номинального количества внешней изоляции приводит к небольшим дополнительным затратам), или владелец здания, который желает значительно снизить энергопотребление конструкции. низким тепловым сопротивлением ограждающей конструкции.Результаты этого исследовательского проекта могут быть в равной степени применены к новому строительству с аналогичными параметрами.
1.2 Предпосылки
Были проведены обширные исследования влияния пара, направленного внутрь, в стеновых конструкциях. Исследования показали, что накопление влаги во внутренней отделке, вызванное поступающей внутрь влагой, может создавать проблемы влагостойкости стенового блока (Wilson 1965, TenWolde and Mei 1985, Straube and Burnett 1995, Pressnail et al.2003, Dérome et al. 2010, Dérome and Saneinejad, 2010, Carmeliet and Dérome, 2012). Было обнаружено, что это явление происходит во всех климатических условиях (от жаркого и влажного до холодного и сухого) и в различных конструкциях стен, причем в разной степени.
Исследователи предложили множество стратегий для смягчения эффектов диффузии пара внутрь, таких как вентиляция за облицовкой резервуара или использование пароизоляционных мембран WRB. Однако использование пароизоляционных мембран может привести к проблемам с конденсацией в зимнее время в модернизированных домах с проницаемой изоляцией полостей и без внешней изоляции.Изоляция полости приводит к снижению температуры оболочки, что может, в зависимости от внутреннего и внешнего климата, привести к тому, что оболочка будет достигать температуры ниже точки росы воздуха внутри. Хотя диффузия пара может создавать проблемы с конденсацией, наиболее серьезное беспокойство вызывает конденсация из-за утечки воздуха (Quirouette, 1985; CBD 5 A.J. Wilson, 1960; CBD 23 A.J. Wilson, 1961), которая может переносить больше влаги, чем диффузия пара.
Несмотря на обширные исследования влаги, поступающей внутрь, вызванной солнечным излучением, необходимы дополнительные исследования.В этом исследовательском усилии. Building Science Corporation (BSC) исследовала влияние паропроницаемой изоляционной оболочки на существующие здания. Поддержание оболочки при более высоких температурах изменит зависящую от температуры паропроницаемость, изотерму сорбции, относительную влажность (RH) и сушильную способность. Точно так же более высокая температура оболочки может также представлять повышенный риск биоразложения, поскольку она более восприимчива к росту плесени и гнили при наличии достаточного количества влаги.
1.3 Соответствие целям строительства Америки
В целом цель программы Министерства энергетики США «Строительство Америки» — «сократить потребление энергии в домашних условиях на 30-50% (по сравнению с энергетическими нормами 2009 года для новых домов и предварительных условий)». — модернизация использования энергии для существующих домов) ». С этой целью мы проводим исследования, чтобы «разработать готовые к рынку энергетические решения, которые повышают эффективность новых и существующих домов в каждой климатической зоне США, одновременно повышая комфорт, безопасность и долговечность». 1 Добавление внешней теплоизоляции позволяет увеличить R-значение стены больше, чем было бы в противном случае достижимо для стандартных 2 × 4 дюйма.или конструкция стержневой рамы 2 × 6 дюймов.
Добавление дополнительных 1,25 дюйма непрерывной паропроницаемой внешней изолирующей оболочки может обеспечить дополнительный R5 стеновой сборке при значительном снижении эффекта тепловых мостиков. В конструкции рамы с центральной рукоятью размером 2 × 4 дюйма и шириной 16 дюймов с изоляцией из войлока R13 это приводит к снижению энергопотерь на площадке кондиционирования помещения через непрозрачную стеновую конструкцию на 30%. Увеличение толщины наружной изоляционной обшивки только увеличивает экономию энергии.Кроме того, добавление внешней изоляции снижает склонность к образованию конденсата в холодную погоду на обратной стороне структурной обшивки стены, а также обеспечивает превосходные изоляционные характеристики за счет минимизации тепловых мостиков. Эти факторы уменьшат количество энергии в теле за счет повышения прочности и срока службы, а также значительно сократят потребление энергии для кондиционирования пространства в течение всего срока службы корпуса.
Реализация систем наружных изоляционных стен легко включается в любую модернизацию жилого дома с минимальной детализацией, необходимой для проходов в стенах и оконных проемов.При использовании в сочетании с другими рекомендованными системами с высоким значением R (Straube and Smegal, 2009) использование проницаемой внешней изоляционной оболочки может значительно снизить энергопотребление жилых домов для кондиционирования помещения, помогая достичь целей Building America в размере 30% — 50. % снижение энергопотребления.
1.4 Экономическая эффективность
Для обеспечения экономической эффективности предложений по модернизации был проведен подробный анализ BEopt. Каждой предлагаемой стеновой сборке будет назначена стоимость относительно стандартной конструкции.Эти затраты будут разработаны в сотрудничестве с разработчиками прототипов BSC и сообществом разработчиков. Важно отметить, что если для проекта восстановления здания будет принята стратегия внешней изоляции, дополнительные затраты на добавление номинальной толщины внешней изоляции и применение WRB с желаемой паропроницаемостью будут очень небольшими, так как затраты на облицовка, обшивка и т. д., уже включенные в реконструкцию здания. Однако, если единственной целью модернизации является увеличение общей R-ценности стены, тогда связанные с этим затраты на предлагаемую модернизацию будут значительно выше.
Нельзя игнорировать тот факт, что изначально может потребоваться более дорогая система для экономии значительного количества энергии в течение всего срока службы конструкции, который будет намного дольше, чем при стандартной ипотеке. Исследования показали, что стены с R-значением, превышающим 35, могут окупиться в течение срока действия первоначальной ипотеки за счет экономии энергии при одновременном сокращении выбросов парниковых газов (Грин, 2008). Поскольку ограждение здания спроектировано так, чтобы потреблять меньше энергии, экономия энергии и выбросов парниковых газов распространяется на весь срок службы здания, а не только на срок первоначальной ипотеки или ссуды на модернизацию.
Повышение влагостойкости и долговечности сборки также добавится в уравнение анализа стоимости жизненного цикла, поскольку потребуется снижение затрат на ремонт и восстановление, вызванное биоразложением. Кроме того, чем дольше длится сборка, тем больше энергии она будет использовать в течение всего срока службы и тем больше будет начальная экономия на энергоэффективности. Правильная детализация сборки также важна для обеспечения того, чтобы в течение срока службы сборки, когда компоненты требовали замены (например, окна и двери), сборка легко допускала эти замены без риска повреждения.
1.5 Компромиссы и другие преимущества
Преимущества использования правильно детализированной и установленной паропроницаемой внешней изоляции в модификациях с изоляцией паропроницаемых полостей по сравнению с кодовой стенкой следующие:
- Более высокий R -value
- Снижение затрат на кондиционирование помещения
- Повышенная прочность и срок службы корпуса
- Повышенная герметичность
- Повышенный комфорт пассажиров.
Каждый из этих компонентов взаимосвязан.Повышенное значение R и воздухонепроницаемость повышают энергоэффективность и комфорт пассажиров за счет уменьшения сквозняков и повышения температуры поверхности. Повышенная долговечность системы снижает требования к техническому обслуживанию, увеличивает срок службы конструкции и устойчивость к возможным условиям эксплуатации в доме.
2 Эксперимент
2.1 Вопрос исследования
Этот проект дал ответы на следующие вопросы исследования.
- Какие изолирующие оболочки доступны для модернизации, каковы характеристики их материалов, связанные с термическим сопротивлением и паропроницаемостью, и какие виды облицовочных элементов можно использовать?
- Каковы характеристики существующих сборок? (Примечание: мы охарактеризуем две наиболее распространенные сборки, которые, вероятно, будут модернизированы в холодных и жарких климатических зонах.)
- Какие типы облицовки являются общими для существующих сборок?
- Какие типы внутренних пароизоляционных слоев являются распространенными и какова их проницаемость?
- Какова герметичность этих узлов?
- Каковы возможные решения по модернизации и какие руководящие принципы следует установить в отношении воздухонепроницаемости, контроля воды, тепловых характеристик и паропроницаемости?
- Какие рекомендуемые решения? (Примечание: мы определим, как функции ограждения здания (контроль воздуха и т. Д.)) обслуживаются модернизированными слоями)
2.2 Обзор литературы
В литературе описан исследовательский проект ASHRAE RP-1235 «Природа, значение и контроль диффузии водяного пара в стеновых системах с помощью солнечной энергии», автор Д. Демом , A. Karagiozis и J. Carmeliet (2010). В нем синтезируются результаты мелкомасштабных и крупномасштабных лабораторных испытаний, полевых испытаний и компьютерного моделирования. Экспериментальные испытания проводились компанией. . .
Загрузите полный отчет здесь.
Сноски:
- http://www1.eere.energy.gov/buildings/building_america/program_goals.html
Понимание паропроницаемости: ответы на ваши вопросы
Слышали ли вы термин «паропроницаемость» и задавались вопросом, что он означает? Нужно знать, что такое химическая завивка? При чем здесь строительные материалы или мой дом?
Что такое паропроницаемость?
Часто называемая воздухопроницаемостью, паропроницаемость описывает способность материала пропускать водяной пар через него.
Если вы вспомните урок естествознания, вы вспомните, что вода может принимать разные формы: твердую, жидкую или газообразную. Паропроницаемость касается воды в газообразной форме. Материалы, которые пропускают водяной пар, называются проницаемыми.
Почему это важно?
Строители возводят жилые стены из нескольких слоев материала. Один из этих слоев часто является погодным барьером. Эффективный погодный барьер выполняет четыре важные функции:
- Сопротивление воздуху (препятствует прохождению воздуха сквозь стены)
- Водонепроницаемость (предотвращает попадание дождя в здание)
- Прочность при строительстве
- Правильный уровень паропроницаемости
Ни одна стена или материал не идеальны, поэтому строители знают, что они должны быть готовы к попаданию жидкой воды в стены, несмотря на все их усилия.
Кроме того, вода всегда пытается найти более сухие места, даже в виде пара. Поскольку водяной пар может диффундировать через твердые материалы, он может находить более сухой воздух. Это означает, что вода попадает внутрь стен, когда она перемещается из более влажных мест в более сухие.
Вот где начинается проблема. Когда вода попадает в стены, ей нужен выход. Если выхода нет, он повреждает стену и вызывает рост плесени. Что еще более усложняет ситуацию, лучшие стратегии по предотвращению проникновения водяного пара могут также удерживать водяной пар, если не используются должным образом.
Проницаемый атмосферный барьер не пропускает жидкую воду (дождь) в ваши стены, позволяя водяному пару проходить сквозь них.
Как измеряется паропроницаемость?
Проницаемость материала измеряется в единицах, называемых химической проницаемостью. Стандартные промышленные тесты определяют, сколько влаги может пройти через барьер за 24 часа. Эти испытания дают материалам относительную оценку, которая показывает, насколько каждый из них устойчив к пропусканию паров влаги.
Материалы можно разделить на четыре основных класса в зависимости от их проницаемости:
- Паронепроницаемость: 0.1 завивка или менее
- Полупроницаемый для пара: 1,0 или менее, но более 0,1 доп.
- Полупроницаемый для пара: 10 или менее, но более 1,0 проницаемости
- Паропроницаемость: более 10 перм.
Материалы с более низким рейтингом проницаемости лучше задерживают движение водяного пара. Если рейтинг проницаемости достаточно низкий, материал является замедлителем парообразования. Если он действительно низкий, то это пароизоляция.
Если рейтинг проницаемости больше 10, он не считается замедлителем образования пара.Это проницаемый материал.
Как климат влияет на проницаемость?
Обычно водяной пар перемещается от теплой стороны стены к холодной стороне стены. Это означает, что он имеет тенденцию идти изнутри наружу в северном климате и снаружи на юге. В середине страны часть года идет изнутри наружу, а часть года — извне внутрь.
Это означает, что строителям нужны разные стратегии для разных климатических условий. Они также должны учитывать разницу между летом и зимой.
Какова паропроницаемость домашних оберток Barricade®?
Мы предлагаем полную линейку домашних пленок для удовлетворения самых разных потребностей. Каждая из наших оберток для дома имеет различный рейтинг проницаемости.
Обертка для дома | Пермский рейтинг (ASTM E-96A) |
---|---|
Баррикадная пленка | 11 Пермь США |
Баррикадная пленка Plus | 16 Пермь США |
R-Wrap® | 50 Пермь США |
Остались вопросы?
У вас остались вопросы по паропроницаемости? Хотите знать, какой продукт для домашнего обертывания подходит для вашей работы? Свяжитесь с нами — мы будем рады ответить на ваши вопросы.
Причина отказа пены №4 — Контрпродуктивное замедлитель парообразования
Контрпродуктивный замедлитель паров
По мере повышения уровня изоляции ограждающие конструкции становятся холоднее и устойчивее к высыханию, дольше остаются влажными и создают больший риск образования плесени и повреждений конструкции. В связи с тем, что конструкция не может сушиться «запеканием / воздушной сушкой» устаревшим энергосберегающим способом, сушильная способность сборки — ее эластичность — становится зависимой от сушки, обусловленной диффузией пара.
Слева: теплый неэффективный корпус, который «печется досуха».
Справа: холодный и хорошо изолированный корпус, зависящий от сушки диффузией пара. (Фото: Институт пассивного дома, Дармштадт, Германия)
Поэтому мы хотим максимизировать потенциал сушки диффузией пара.
Водяной пар естественным образом проникает через материалы из областей с высокой концентрацией в области с низкой концентрацией, а также от более высоких температур к более низким. В холодном и смешанном климате (климатические зоны 4 и выше) преобладающий поток пара направлен из теплого / влажного интерьера в холодный / сухой внешний вид.Если в сборке есть влага, она хочет выбраться наружу. И в общем, имеет смысл позволить это — имея за бортом открытые для пара материалы.
Но по дороге на форум произошла не такая уж забавная вещь. Подобно одержимости энергетической промышленностью ископаемым топливом и ядерной энергией, строительная промышленность влюбилась в пену (и паронепроницаемые деревянные обшивки).
Реклама производства пенопласта
Давайте кратко рассмотрим эволюцию деревянного каркаса в этом отношении.Ниже на диаграмме ( A ) мы видим деревянный каркас с паронепроницаемой обшивкой из сосновой доски снаружи, деревянный каркас с минимальной изоляцией или без нее и внутреннюю штукатурку: неудобно, неэффективно и безопасно от повреждения влагой. На диаграмме ( B ) мы видим введение изоляционного войлока в полость каркаса, чтобы обеспечить больший комфорт и энергоэффективность, наряду с паронепроницаемой фанерой или обшивкой OSB, заменяющей наружные сосновые доски. Изоляция делает конструкцию более холодной, перемещая точку росы в полость, в то время как внутренняя поверхность пароотталкивающей наружной обшивки становится первой конденсирующей поверхностью, что может привести к повреждению от влаги.На диаграмме ( C ) мы видим введение внешней непрерывной изоляции для повышения температуры пароизоляционной оболочки выше точки росы, избегая конденсации и связанных с этим повреждений. И вскоре — как будто по волшебству вводящих в заблуждение значений теплоизоляции (см. «Причина сбоя пены №3») — почти вся обертка выполняется из пенопласта, что еще больше снижает способность сборки высыхать наружу.
Поскольку мы оборачиваем наши здания паронепроницаемой оболочкой и пеной, важно учитывать их способность удерживать влагу.Паропроницаемость пенопласта варьируется от замедлителей образования пара Класса 1: 0,0 проницаемости для полиизо с фольгированной облицовкой до 0,5 проницаемости для XPS толщиной 2 дюйма. Проницаемость пенополистирола варьируется, но составляет приблизительно: 1 дюйм = 3,5 проницаемости, 2 дюйма = 1,75 дюйма, 3 дюйма = 0,875 дюйма, 4 дюйма = 0,5 дюйма и т. Д. Обшивка из OSB и фанеры в условиях сухого термометра является замедлителем парообразования класса 3 с допуском 1.
Слева: пароизолированный полиизо, облицованный фольгой. Справа: плотина Гувера
Пар хочет выйти, а оболочка и пена забивают его, повышая влажность и влажность, снижая упругость.
Чтобы проиллюстрировать это явление, мы поместили те же самые три конструкции стен в Бостон Массачусетс и проанализировали их в WUFI Pro. Приведенные ниже графики основаны на показаниях, снятых на стеновой обшивке. Стены обращены на север и не имеют влаги, вносимой дождем, и при этом в них нет предварительно загруженной влаги в новой конструкции.
Сборка стены A: классическая каркасная стена без теплоизоляции
Во-первых, это наша классическая каркасная стена без утеплителя, стена A . Уровень влажности повышается и понижается в зависимости от сезона, но никогда не превышает 72% относительной влажности.(Примечание: уровень влажности важен по отношению к температуре. Если влажность составляет 80% или выше в течение 30 дней, средняя температура составляет 50 градусов по Фаренгейту, может начаться рост плесени, поэтому индикаторы ОПАСНО должны погаснуть.)
Сборка стены A: Историческая каркасная стена без теплоизоляции, обшивки из досок и наружной обшивки с гипсом внутри.
Уровень влажности не достигает 80%. Безопасно и неэффективно.
Стена B: каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока
Следующая сборка, B , показанная ниже, имеет длительные периоды 100% влажности и конденсации, образующейся на внутренней стороне оболочки.Это не хорошо. Это плохо. Избегайте этой сборки.
B) Каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока. Сборка под названием неисправность
Узел стены C: завернутый в изоляцию из пенопласта XPS толщиной 2 дюйма
Далее у нас есть стена C, , затем обернутая 2-дюймовым изоляционным слоем из вспененного XPS. Несмотря на отсутствие образования конденсата (очень хорошо), уровень влажности повышается, а риск образования плесени увеличивается, поскольку в сборке отсутствуют какие-либо допуски. чтобы добавить влаги, на грани выхода из строя.Это не прочный и не устойчивый профиль.
Сборка стены C: теперь добавьте 2 дюйма подвесного двигателя XPS, чтобы избежать конденсации, но это приведет к опасной влажности.
И если вам интересно, 1 дюйм XPS хуже, так как этого недостаточно для предотвращения конденсации. Если вы хотите остаться в этом тупике из пенопласта, единственный «ответ» — добавить еще больше Из-за этого пена является непродуктивным замедлителем образования пара и четвертой причиной выхода пены из строя.
Сборка стены D: более прочная альтернатива без пены
Мы можем делать лучше: более устойчивые, надежные, более экологичные. Чтобы увидеть альтернативы обертыванию здания пеной, см. Наши пять файлов DWG с наборами чертежей, которые доступны в разделе «Руководства по сборке зданий».
Чтобы увидеть сопоставимую модель WUFI сборки, которая имеет прочный и упругий паровой профиль, ниже мы показываем стену, которая представляет собой стеновой каркас 2×6 с изоляцией из войлока и наружной фанерной обшивкой — стенка D .Но вместо того, чтобы обертывать оболочку пеной, мы оборачиваем ее снаружи волокнистой изоляцией и обеспечиваем внутри борт интеллектуальный пароизоляционный материал. Уровень влажности остается ниже 72% и допускает непредвиденные обстоятельства. Более надежный подход.
Сборка стены D: более прочная альтернатива без пены: 2-дюймовый внешний вид волокнистой изоляции, обшивка, 2×6 с войлоком и встроенный интеллектуальный замедлитель парообразования.
И альтернативная схематическая диаграмма ниже.
Стенка D: внутренний паровой замедлитель и внешняя волокнистая изоляция делают это более безопасной и устойчивой альтернативой.
Паропроницаемость
: 7 минут бакалавриата — Строительная наука с битом
Пароизоляция во многих частях Северной Америки приносит гораздо больше вреда, чем пользы. Понимание пароизоляции начинается с понимания того, что значит быть одним
В этом выпуске Джонатан Смегал, магистр наук, старший менеджер проекта RDH Building Science Laboratories, рассказывает о том, как влага перемещается через материалы и что это значит для стен и крыш.
Что это:
гарантия | ˈVāpər pərmēəns — сущ.
«Паропроницаемость — это свойство материала, и в наших обсуждениях это будут строительные материалы, которые позволяют водяному пару проходить через него.«
—Джонатан Смегал, RDH Building Science Laboratories
Как работает паропроницаемость
«Некоторые материалы имеют высокую паропроницаемость, что означает, что они пропускают большое количество водяного пара, а другие материалы имеют значительно меньшую паропроницаемость, поэтому они блокируют движение водяного пара, и это называется пароизоляцией или пароизоляторами».
Термины, с которыми большинство из нас знакомо, даже если не совсем ясно их различия.
«Количество водяного пара, который проходит через материал, зависит от паропроницаемости этого материала и количества водяного пара, также называемого давлением пара, на каждой стороне материала».
Проницаемость зависит не только от самого материала, такого как гипсокартон, но и от того, насколько влажен воздух с каждой стороны стены.
«Проще говоря, паропроницаемость можно определить в лаборатории, подвергнув известную область материала известному градиенту давления пара или известной относительной влажности с обеих сторон.«
Градиент давления пара — это степень «тяги» одной стороны стены по сравнению с другой. Влага переходит от влажного к сухому, и то, насколько велика разница, определяет силу вытягивания.
«Давление пара на каждой стороне исследуемого материала может варьироваться, но чаще всего, или то, что мы называем испытанием в смачиваемой чашке со 100% относительной влажности с одной стороны…»
Насыщенный воздух
«… и относительная влажность 50% с другой стороны».
Достаточно обычный воздух.
«Другой типичный тест называется тестом в сухом тигле. При относительной влажности 0% или влагопоглотителя на одной стороне исследуемого материала и 50% на другой».
Оба этих теста являются частью стандарта ASTM E96, и выбор между испытанием в смачиваемой чашке или тестом с сухой чашкой зависит от того, где материал должен прожить свою жизнь: внутри или снаружи здания.
«Например, снаружи здания во многих климатических условиях оно будет подвергаться более высокой относительной влажности, как и следовало ожидать во время дождя и различных климатических условий.
Таким образом, испытание в смачиваемой чашке, вероятно, является более подходящим испытанием для строительных материалов на внешней стороне корпуса.
Внутри, где воздух более сухой, тест в сухой чашке лучше покажет ожидаемую производительность. Вы не должны проводить эти тесты на месте, у них есть лаборатории, как у Джонатана, для этого. Все эти лабораторные результаты должны быть включены в стандарты и кодексы, но иногда некоторые из кодексов и стандартов немного неясны.
Джонатан сообщил мне, что в строительном кодексе есть некоторые аномалии, которые требуют проведения теста на сухой стакан для внешних материалов, таких как обшивка.Он также отмечает, что воздух очень важен при рассмотрении переноса пара.
Важно помнить, что паропроницаемость и движение пара за счет диффузии через слои ограждения не зависит от движения воздуха ».
Диффузия пара описывается законом идеального газа. По сути, это молекулы воды в воздухе, сталкивающиеся друг с другом и с поверхностями. Успех диффузии пара зависит от того, насколько проницаемо вещество, с которым они сталкиваются.Гораздо более быстрый путь в стену — это направить поток воздуха в дыру.
«Проникновение или эксфильтрация воздуха в ограждение может перемещать на порядки больше водяного пара. Так, как если бы водяного пара в сто раз больше, чем только за счет диффузии пара».
Отсюда недавний упор в строительстве высоких рабочих характеристик на воздушные барьеры над пароизоляцией.
«Часто путают воздушные и пароизоляционные заслонки, но это отдельная тема.«
Для другого шоу. Между тем, некоторые примеры материалов с высокой проницаемостью — домашние покрытия, такие как Tyvek,
.
«Латексная краска довольно хорошо паропроницаема».
Гипсокартон парооткрытый …
«Минеральная изоляция или даже изоляция из стекловолокна пропускают через себя много водяного пара».
Изоляция из аэрозольной пены с открытыми порами …
«Аааааааааааааааааа вся неразбериха, сейчас много разных пен.Пенопласт с открытыми порами весом в полфунта достаточно паропроницаем и не контролирует движение пара ».
Значит, аэрозольная пена с закрытыми порами является пароизоляцией?
«Двухфунтовая пена для распыления с закрытыми ячейками толщиной около двух дюймов считается пароизоляцией».
Другие пароизоляционные материалы или замедлители парообразования включают полиэтилен толщиной шесть мил, крафт-бумагу, облицованную стекловолоконным войлоком, имеется множество отслаивающих и липких мембран, которые представляют собой полные пароизоляционные материалы.
«Важно знать паропроницаемость материалов в стеновой сборке, чтобы водяной пар случайно не улавливался в месте внутри стенового ограждения.«
Как использовать паропроницаемость в ваших интересах
Игнорирование в течение минуты, хорошая ли идея пароизоляции,
«Общее практическое правило — размещать пароизоляцию в сборке на теплой стороне корпуса».
Итак, я не говорю, что он вам нужен, но если он указан, то он должен быть внутри стены в холодных местах и снаружи стены в жарких местах.
«Если вы поместите пароизоляцию внутри корпуса на гипсокартон в жарком или влажном климате, например, на виниловых обоях, вероятно, что внутри будет скопление влаги, застрявшее между винилом. обои и гипсокартон.«
Я видел много черной плесени за обоями в Теннесси, где я переделывал дома.
«Это общая проблема в жарком влажном климате, но мы провели исследование, которое показало конденсацию на внутренней пароизоляции из полиэтилена, даже в пятой климатической зоне, с облицовкой, аккумулирующей влагу, такой как непосредственно приклеенный камень».
И у нас есть подкаст о облицовках резервуаров, если вам интересно.
«Кожухи должны быть спроектированы таким образом, чтобы сохнуть по крайней мере в одном направлении, будь то изнутри или снаружи, в зависимости от того, в какой климатической зоне вы находитесь, и от свойств материала выбранных материалов кожуха.
Это подчеркивает важность рассмотрения всей сборки при проектировании высокоэффективной стены или крыши.
Важно помнить, что диффузия пара через кожух контролируется наименее паропроницаемым материалом. Таким образом, если вы спроектируете пароизолированный кожух и поместите в нем один слой, непроницаемый для пара, или пароизоляцию, это предотвратит проникновение всего пара в кожух или из него на этом слое ».
Некоторые ученые называют такой анализ паровым профилем конструкции, имея в виду, каким образом стена может высохнуть от любого данного слоя.Если он не может высохнуть или проникнуть откуда-то, это проблема.
«Итак, мы говорили о парооткрытых материалах и пароизоляционных материалах, но есть также категория материалов, которые часто называют интеллектуальными пароизоляционными материалами.
Эти типы материалов имеют разную паропроницаемость при разной относительной влажности окружающей среды, поэтому в более сухой среде с низкой относительной влажностью они будут действовать как пароизоляция.
Но если бы относительная влажность увеличилась, скажем, в результате небольшого количества утечки воды в ограждение, в окне, тогда паропроницаемость этого интеллектуального пароизоляции увеличилась бы, позволяя больше осушать воду, которая просачивалась в сборка — снижает риск возникновения проблем с влажностью.
Самый распространенный «умный» замедлитель парообразования — это крафт-бумага на основе многих стекловолоконных войлок. Бумага закрывается от пара, если полость стены не становится влажной, после чего бумага становится открытой для пара, позволяя высохнуть.
На рынке есть и другие продукты, представляющие собой пластиковые пленки, которые будут вести себя так же, а также иметь более широкий диапазон паропроницаемости.
MemBrain, вероятно, самый распространенный в Северной Америке, но существует много других, многие из них все еще находятся только в Европе, но они становятся все более распространенными в Северной Америке.«
Еще одна вещь, которая распространена в Северной Америке?
Разбивка научных принципов на семь минут бакалавриата.
Помните, вам платят за то, что вы делаете и что знаете. В сутках всего 24 часа, а информации бесконечно.
Мы хотели бы поблагодарить RDH Building Science за предоставление инженеров для этого дела и за технические исправления в моих текстовых усечениях.
Подписаться: iTunes | Google Play | SoundCloud
—7 минут BS — продукт SGC Horizon Media Network.
паропроницаемость | Pro Remodeler
Такие термины, как «пароизоляция» или «замедлитель парообразования» знакомы большинству из нас, хотя мы, возможно, не совсем понимаем их различия. Они описывают паропроницаемость материала — его способность предотвращать или позволять водяному пару проходить через него. Материалы с высокой паропроницаемостью пропускают большое количество водяного пара; материалы с низкой паропроницаемостью блокируют прохождение некоторых или всего водяного пара через них и называются «пароизоляторами» или «паронепроницаемыми барьерами».”
Сколько водяного пара проходит через материал, зависит не только от паропроницаемости этого материала, но также от количества водяного пара (также называемого давлением пара) на каждой стороне материала. Проще говоря, паропроницаемость можно определить в лаборатории с помощью тестов, в которых известная площадь и толщина материала подвергаются воздействию известного градиента температуры и давления пара или RH (относительной влажности) с обеих сторон. Влага переходит из влажного состояния в сухое, а градиент давления пара описывает, насколько «тянущее» одна сторона стены по сравнению с другой стороной.Чем больше разница в градиенте давления между сторонами, тем сильнее притяжение пара.
Тестирование проницаемости
ASTM E96 («Стандартные методы испытаний материалов на проницаемость водяного пара») описывает два испытания, обычно называемых испытаниями «смачиваемая чашка» и «сухая чашка». В испытании смачиваемой чашкой воздух на одной стороне материала в значительной степени является обычным воздухом (относительная влажность 50% при 25 ° C / 77 ° F), а воздух на другой стороне является насыщенным (относительная влажность 100%). При испытании в сухом тигле с одной стороны также используется обычный воздух (относительная влажность 50% при 25 ° C / 77 ° F), а на другой стороне находится либо осушитель, либо воздух с относительной влажностью 0%.
Результаты этих испытаний в конечном итоге используются в нормах и стандартах. Выбор теста зависит от того, будет ли тестируемый материал использоваться внутри или снаружи здания. Например, во многих климатических условиях материал снаружи здания будет подвергаться более высокой относительной влажности, как и следовало ожидать во время дождя и более тропических климатических условий. В этих случаях испытание смачиваемой чашкой, вероятно, является более подходящим испытанием для строительных материалов, предназначенных для использования на внешней стороне корпуса.Внутри, где воздух более сухой, тест в сухой чашке лучше покажет ожидаемую производительность.
Распространение путаницы
Размышляя о проницаемости, важно помнить, что существует разница между паром, который переносится воздушными потоками посредством инфильтрации или эксфильтрации, и диффузией пара, которая не зависит от движения воздуха. Диффузия пара, описываемая законом идеального газа, в основном представляет собой активность молекул воды в воздухе, сталкивающихся друг с другом и с поверхностями.Степень, в которой диффузия приводит к тому, что молекулы воды проникают внутрь и через поверхности, с которыми они сталкиваются, зависит от того, насколько проницаемы эти поверхности.
Но распространение — это обычно медленный процесс. Более быстрый способ проникновения молекулы воды в стену — это направить воздушный поток в отверстие в стене, например, в пространство вокруг электрической розетки или оконного косяка. Проникновение или эксфильтрация может перемещать на порядки больше водяного пара, чем только диффузия пара. Отсюда недавнее снижение акцента на пароизоляции в зданиях с высокими эксплуатационными характеристиками в пользу воздушных барьеров .Пароизоляция предназначена для остановки диффузии пара, тогда как воздушные барьеры предназначены для предотвращения инфильтрации или эксфильтрации воздуха, как сухого, так и влажного.
Использование паропроницаемости
(Примечание к таблице: в приведенной ниже таблице значений проницаемости для обычных строительных материалов более низкие значения указывают на более низкую проницаемость, чем более высокие значения. При оценке конкретных сборок обратите внимание, что относительная влажность и толщина материала могут влиять на рейтинг проницаемости.)
Важно знать паропроницаемость материалов, используемых в сборке стен, чтобы водяной пар случайно не попал внутрь стены.
Не обращая внимания на то, является ли пароизоляция хорошей идеей, общее практическое правило — размещать пароизоляцию на теплой стороне корпуса. Таким образом, не говоря уже о том, что он вам нужен, если указана пароизоляция, она должна быть на внутренней стороне стены в условиях отопления и на внешней стороне стены в условиях прохладного климата.
В жарком климате влажный внутренний воздух, попадающий в стены или стропильные ниши, может конденсироваться, когда встречается с более холодной поверхностью обшивки.Если влага не высыхает относительно легко, это может привести к появлению плесени и гниению деревянных деталей.
Аналогичным образом, в прохладном климате водяной пар во влажном наружном воздухе, который проникает в стену и встречает пароизоляцию, например, виниловые обои, наклеенные на холодную кондиционируемую поверхность гипсокартона, почти наверняка вызовет конденсацию и задержит влагу между обоями и гипсокартоном, что может привести к образованию черной плесени за обоями. Это общая проблема в жарком и влажном климате, например на юго-востоке США.S., но мы провели исследование, которое показывает конденсацию на внутренней полиэтиленовой пароизоляции даже в климатической зоне 5 с облицовкой, аккумулирующей влагу, такой как непосредственно приклеенный камень.
Корпуса
должны быть спроектированы таким образом, чтобы высыхать по крайней мере в одном направлении — внутрь или снаружи, в зависимости от того, в какой климатической зоне вы находитесь, и от свойств материалов корпуса. Это подчеркивает важность рассмотрения всей конструкции при проектировании высококачественной стены или крыши.Распространение пара через камеру контролируется наименее паропроницаемым материалом. Таким образом, если вы спроектируете паронепроницаемую оболочку, но включите в нее один слой, непроницаемый для пара — пароизоляцию, — это предотвратит попадание всего пара в оболочку или из нее на этом слое. Некоторые ученые называют такой анализ «паровым профилем» сборки, потому что он описывает, каким образом стена может высохнуть из любого данного слоя. Если он не может высохнуть или высохнуть, это проблема.
Проницаемость варьируется от материалов с высокой проницаемостью (таких как некоторые домашние обертки, латексная краска, изоляция из минерального или стекловолокна и гипсокартон) до пароизоляционных материалов (таких как крафт-облицовочная бумага на изоляционном войлоке) и пароизоляционных материалов (таких как полиэтилен толщиной 6 мил и многое другое). отшелушивающие мембраны), которые эффективно блокируют прохождение водяного пара.
Пена для распыления раньше считалась непроницаемой, но сейчас есть много разных формул. Пена с открытыми порами весом в полфунта достаточно паропроницаема и не контролирует движение пара. Даже пена с закрытыми порами является в некоторой степени проницаемой до толщины около 2 дюймов, в этом случае она считается пароизоляцией.
Умная пароизоляция
Существуют также материалы, называемые «интеллектуальными пароизоляционными материалами», у которых проницаемость варьируется в зависимости от относительной влажности окружающей среды.В более сухой среде с низкой относительной влажностью они будут действовать как пароизоляция. Но если относительная влажность увеличивается из-за, например, утечки воды в корпус, тогда паропроницаемость интеллектуальной пароизоляции увеличится и позволит более эффективно высыхать.
Самым распространенным интеллектуальным замедлителем образования пара является крафт-бумага на изоляционном войлоке. Бумага закрывается паром, если полость стены не становится влажной, после чего бумага становится паропроницаемой, что позволяет высохнуть. Существуют также пластиковые пленки, которые ведут себя точно так же, часто с более широким диапазоном паропроницаемости.MemBrain от CertainTeed является одним из примеров в Северной Америке, но есть и другие, многие из которых до сих пор используются только в Европе.
Узнайте больше о строительной науке здесь
Управление влажностью — ThermalTight
Зданиям необходимо высохнуть. Но они также должны быть герметичными. И чем плотнее мы строим, тем важнее следить за тем, чтобы стенные конструкции были рассчитаны на высыхание. Вот здесь-то и вступает в игру паропроницаемость. Когда строительный материал полупаропроницаем или паропроницаем, он позволяет влаге перемещаться на в обоих направлениях.Стеновые конструкции с высокими эксплуатационными характеристиками полагаются на эти материалы, чтобы считаться «паропроницаемыми».
Чтобы правильно управлять влажностью, степень проницаемости, относящаяся к конструкции всей конструкции стены, И климат — оба важных фактора при выборе строительных материалов.
Общие сведения о Vapor Drive
Водяной пар диффундирует через строительные материалы с теплой влажной стороны здания в сторону холодной и сухой. Летом в салон гонят пар.Зимой эта влага доводится до низких температур снаружи стеновой конструкции. Это движение называется паровым приводом. Его тяга может быстро измениться зимой, если солнце нагревает внешнюю стену и загоняет влагу обратно внутрь, что называется движением внутрь солнечного пара.
Слой ThermalTight WRB — 42 проницаемости; Neopor® GPS 3,5 перм.
«Если компоненты стеновой сборки выбраны плохо… не может быть более быстрого механизма для разрушения дома, чем внутренний солнечный паровой двигатель.”
Традиционно при сборке стен более высокий материал VP (WRB) размещается напротив обшивки, а менее проницаемый (изоляция) — на внешней стороне WRB. Но стены могут стать перенасыщенными , если скорость вытеснения пара происходит слишком быстро. Этот традиционный тип сборки не всегда может высохнуть должным образом, что приводит к повреждению от влаги.
Мы строим более надежные дома. Чрезвычайно важным становится управление скоростью парового привода.
Размещение WRB и изоляция имеет значение.Вот почему система ThermalTight ™ представляет собой одну из самых эффективных систем дренажа и создания воздушных барьеров для ограждающих конструкций здания.
Система ThermalTight ™ — воздухонепроницаемая и паронепроницаемая
ThermalTight разработан с верхним слоем VP (WRB) на внешней стороне панели и нижним слоем VP (жесткая изоляция Neopor® GPS), прилегающим к оболочке. Это контролирует скорость вытеснения пара снаружи в течение отопительных месяцев, позволяя влаге перемещаться наружу со скоростью, аналогичной скорости, с которой она попадает в конструкцию стены изнутри.
В солнечные зимние дни, когда может происходить поступление солнечного пара внутрь, различные слои проницаемости ThermalTight замедляют движение влаги в стене до тех пор, пока солнечный привод не прекратится, когда влага может продолжать вытягиваться наружу здания.
В холодные месяцы, когда внутреннее пространство с кондиционированием воздуха является нормой, эта многослойность также важна. Самый внешний слой ThermalTight WRB позволяет парам выходить наружу, когда это необходимо, а запатентованная система заслонок предотвращает утечку воздуха из-за попадания большего количества влаги в стенную конструкцию.
Низкий уровень паропроницаемости жесткого пенопласта Neopor® GPS замедляет движение влаги по мере того, как она втягивается в стенную конструкцию, переходя от летней жары к прохладному, кондиционируемому интерьеру. При такой медленной скорости стена все еще может пропускать пар во внутреннюю часть, не допуская образования конденсата на гипсокартоне.
ThermalTight не пропускает пар и рассчитан на высыхание. Это предотвращает перенасыщение стеновой конструкции вне зависимости от климатических условий.
Здание с воздухонепроницаемыми, паропроницаемыми панелями ThermalTight помогает предотвратить дорогостоящие повреждения плесенью и плесенью, что делает его идеальным решением для ограждающих конструкций здания в большинстве регионов. Узнайте больше о преимуществах полной системы ThermalTight ™ здесь .
Хотите погрузиться глубже? Мы рекомендуем эти отличные ресурсы: «Понимание пароизоляции», https://buildingscience.com; «Когда солнечный свет загоняет влагу в стены», «Размышления ботаника-энергетика», Fine Homebuilding, Мартин Холладей, июль 2017 г .; «Как это работает: паровой двигатель», Роб Ягид, Fine Homebuilding, май 2009 г.
.
Leave a Comment